Page 4

Laboratory CBR Tests

Laboratory CBR tests were performed on samples obtained from borings B-2, B-6, B-8 and B-9. The tests were performed in accordance with ASTM D 1883. Laboratory test results are presented in Appendix B. A summary of the laboratory CBR test results is presented in Table 3.

TABLE 3 LABORATORY CBR TEST RESULTS									
Boring No.	Depth	CBR a	t 0.1" Peneti	ration					
	(feet)	90%	95%	100%					
B-2	1-5	9	15	21					
B-6	1-5	9	24	39					
B-8	1-5	7	18	28*					
B-9	1-5	12	26	43					

*Extrapolated

Maximum Dry Density- Optimum Moisture Content Tests

Maximum dry density/optimum moisture content tests were performed on four samples obtained from borings B-2, B-6, B-8 and B-9. Tests were performed in accordance with ASTM D 698. Test results are included in Appendix B. A summary of test results is presented in Table 4.

TABLE 4 MAXIMUM DRY DENSITY/OPTIMUM MOISTURE CONTENT TEST RESULTS										
Boring No.	Depth (feet)	Maximum Dry Density (pcf)	Opt. Moisture Content (%)							
B-2	1-5	114.5	6.3							
B-6	1-5	117.0	10.0							
B-8	1-5	117.7	8.7							
B-9	1-5	117.2	10.0							

In-situ Moisture/Density

In-situ moisture /density (ASTM D 2216 and D 2937) tests were performed on selected samples of undisturbed soil. In-situ moisture/density test results are presented on the boring logs.

EARTHWORK RECOMMENDATIONS

Site Preparation

For areas that will require removal and replacement of the existing pavement, if applicable, the site should be cleared of existing pavement and deleterious materials. Organic and other deleterious materials not suitable for use as structural backfill should be disposed of offsite at a legal disposal site.

Preparation of Areas to Receive Fill

The site soils should be excavated with conventional heavy-duty excavation equipment in good working order. Exposed excavation bottoms and subgrade surfaces to receive fill should be scarified to a minimum depth of eight inches, brought to within +/- 2 percent of optimum moisture content and compacted to 100 percent of the maximum dry density as determined by ASTM D 698. Due to the relatively low moisture contents of the in-situ soils, significant additional water will need to be added to obtain the specified moisture content for compaction.

Fill Placement and Compaction

Structural fill should be compacted to at least 100 percent of the maximum dry density (as determined by ASTM D 698) at moisture content within +/- 2 percent of optimum. The optimum lift thickness for fill soils will be dependent on the type of compaction equipment being utilized. Generally, fill should be placed in uniform horizontal lifts not exceeding 8 inches in loose thickness. Placement and compaction of fill should be performed in general conformance with geotechnical recommendations and FAA requirements.

Soils generated from on-site excavations are anticipated to be suitable for use as structural fill, provided they are free from debris and deleterious material. Rocks or other soil fragments greater than four inches in size should not be used in the fills or in the upper six inches of subgrade soil. Proposed import materials, if needed, should be evaluated by the project geotechnical engineer prior to being placed at the site. Import materials should consist of non-corrosive, non-expansive granular material.

Subbase and base should be compacted to 100 percent of maximum dry density (as determined by ASTM D 698) at moisture content of +/- 1-1/2 percent of optimum moisture content. Moisture may need to be wet of optimum to achieve 100 percent compaction. Actual moisture needed should be evaluated at the start of construction using test sections as necessary.

Major compaction problems are not anticipated in granular soils provided moisture content is carefully controlled. Subbase, base, granular soils and asphalt pavement may be compacted using smooth drum (vibratory), vibratory sheepsfoot, smooth-wheeled and rubber-tired compactors. It is the responsibility of the contractor to utilize proper equipment to compact site soils and pavement.

Corrosive Soils

Sulfate-containing solutions or soil can have a deleterious effect on the in-service performance of concrete. In order to evaluate the soil corrosivity, a representative sample of the site soil was laboratory tested for pH, resistivity, soluble sulfate and chloride. The results of the tests are summarized in Table 5.

TABLE 5 SUMMARY OF CHEMICAL ANALYSES										
Sample Location	рН	Resistivity (ohm-cm)	Sulfate (ppm)	Chloride (ppm)						
B-5 @ 1-5'	7.1	8,500	60	54						

Based on ACI 18 Building Code and Commentary Table 4.3.1, sulfate exposure of 60 ppm is considered *negligible*. We recommend that Type II modified or Type V cement be used. Concrete should have a maximum water-cement ratio of 0.50 and a minimum compressive strength of 4000 psi.

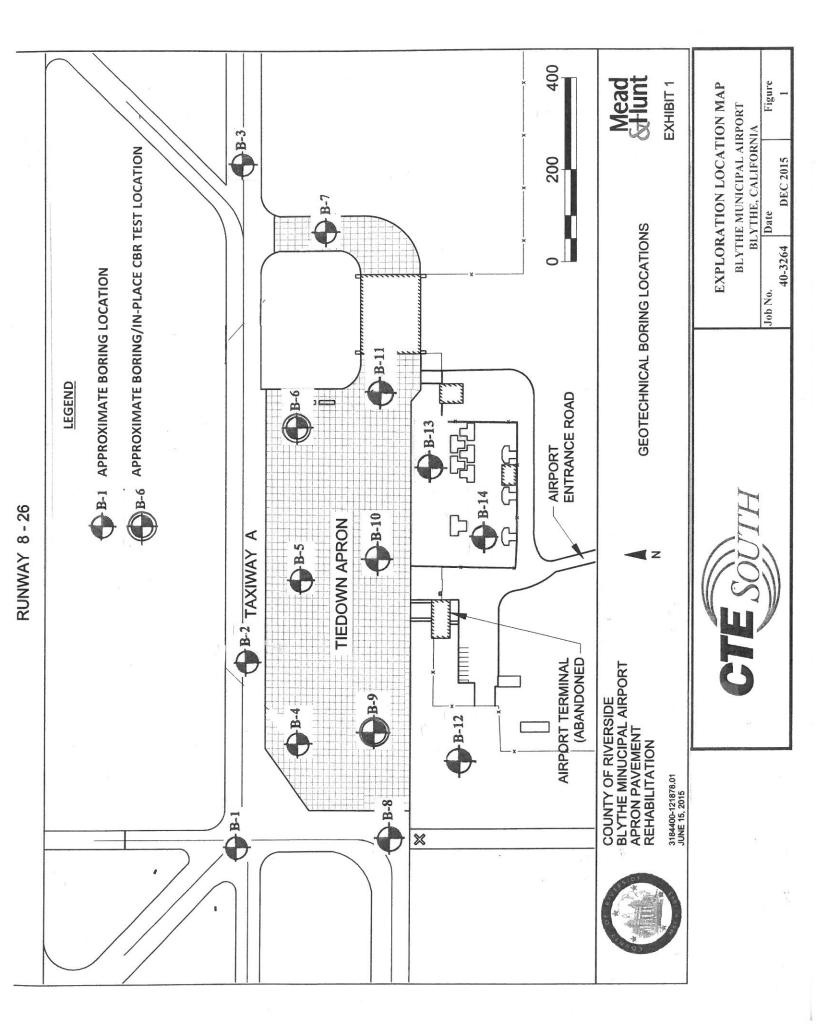
Based on the results of the resistivity tests, site soil appears to be *moderately corrosive* to ferrous metals. CTE does not practice in the field of corrosion engineering. Therefore, a corrosion engineer could be consulted to determine the appropriate protection for metallic improvements in contact with site soils.

We appreciate this opportunity to be of service on this project. If you have questions regarding this report, please do not hesitate to contact the undersigned.

Respectfully submitted, CTE, South, Inc.

Clifford A. Craft, GE #243 Senior Geotechnical Engineer

12210


Robert L. Ellerbusch Staff Geologist

Vincent J. Patula

Vincent J. Patula, CEG #2057 Senior Engineering Geologist

<u>APPENDIX A</u>

FIELD EXPLORATION METHODS AND EXPLORATION LOGS

APPENDIX A

FIELD EXPLORATION METHODS AND EXPLORATION LOGS

Soil Boring Methods

Relatively "Undisturbed" Soil Samples

Relatively "undisturbed" soil samples were collected using a modified California-drive sampler (2.4-inch inside diameter, 3-inch outside diameter) lined with sample rings. Drive sampling was conducted in general accordance with ASTM D-3550. The steel sampler was driven into the bottom of the borehole with successive drops of a 140-pound weight falling 30-inches. Blow counts (N) required for sampler penetration are shown on the boring logs in the column "Blows/Foot." The soil was retained in brass rings (2.4 inches in diameter, 1.0 inch in height) and sealed in waterproof plastic containers for shipment to the CTE, South, Inc. geotechnical laboratory.

Disturbed Soil Sampling

Bulk soil samples were collected for laboratory analysis using two methods. Standard Penetration Tests (SPT) were performed according to ASTM D-1586 at selected depths in the borings using a standard (1.4-inches inside diameter, 2-inches outside diameter) split-barrel sampler. The steel sampler was driven into the bottom of the borehole with successive drops of a 140-pound weight falling 30-inches. Blow counts (N) required for sampler penetration are shown on the boring logs in the column "Blows/Foot." Samples collected in this manner were placed in sealed plastic bags. Bulk soil samples of the drill cuttings were also collected in large plastic bags. The disturbed soil samples were returned to the CTE, South, Inc. geotechnical laboratory for analysis.

ייסס			SYMBOLS	OFTERMS			
PRI		1			DARY DIVISIONS VELS, GRAVEL-SAND MIXTURE	s	
	GRAVELS MORE THAN	CLEAN GRAVELS	GW 200	LITT	LE OR NO FINES		
s AN	HALF OF	< 5% FINES	GP		GRADED GRAVELS OR GRAVEL SAND MIXTURES, LITTLE OF NO FINES		
ы на С	COARSE FRACTION IS				RAVEL-SAND-SILT MIXTURES,		
D S D S	LARGER THAN	GRAVELS WITH FINES			N-PLASTIC FINES GRAVEL-SAND-CLAY MIXTURES		
	NO. 4 SIEVE		GC S	,	LASTIC FINES	З,	
COARSE GRAINED SOILS MORE THAN HALF OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE	SANDS	CLEAN	SW	WELL GRADED SANDS	, GRAVELLY SANDS, LITTLE OR	NO	
SE 7 RE T LIAL . 20	MORE THAN	SANDS < 5% FINES		POORLY GRADED SAN	FINES DS, GRAVELLY SANDS, LITTLE	OR	
COARSE MORE - MATERIAL NO. 20	HALF OF COARSE	< 5% FINES	SP		NO FINES		
MALC	FRACTION IS SMALLER THAN	SANDS	SM	SILTY SANDS, SAND-SI	LT MIXTURES, NON-PLASTIC FI	NES	
	NO. 4 SIEVE	WITH FINES	//, SC ///	CLAYEY SANDS, SAND	SAND-CLAY MIXTURES, PLASTIC FINES		
				INORGANIC SILTS. VER	VERY FINE SANDS, ROCK FLOUR, SILTY		
у н П П П С	SILTS AND (CLAYS		OR CLAYEY FINE SAND	<u>S, SLIGHTLY PLASTIC CLAYEY S</u>	SILTS	
SOILS ALF OF MALLEI MALLEI	LIQUID LIN	IIT IS	CL		DF LOW TO MEDIUM PLASTICITY NDY, SILTS OR LEAN CLAYS	Y,	
HAL SM/S	LESS THA	N 50	OL		RGANIC CLAYS OF LOW PLASTIC	CITY	
ANNE LIS 200 (<mark>┨┊╸┨┊╸┲╴╸╸╴╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╴╴╴╴╴╴╴</mark>	INORGANIC SILTS MIC	ACEOUS OR DIATOMACEOUS F	INF	
E TH RIAI 0. 2	SILTS AND (MH	SANDY OR SI	R SILTY SOILS, ELASTIC SILTS		
FINE GRAINED SOILS MORE THAN HALF OF MATERIAL IS SMALLER HAN NO. 200 SIEVE SIZI	LIQUID LIN	IIT IS	СН ///	INORGANIC CLAYS	OF HIGH PLASTICITY, FAT CLAY	S	
E≥≷d	GREATER TH	HAN 50	OH //	ORGANIC CLAYS OF	FMEDIUM TO HIGH PLASTICITY	,	
					NIC SILTY CLAYS		
HIGH	ILY ORGANIC SOILS		PT		ERTIONET ORGANIO GOIEG		
		GR	GRAIN RAVEL	SIZES SAND			
BOULDERS	COBBLES	COARSE	FINE	COARSE MEDIUM	FINE SILTS AND CL/	AY5	
			3/4" 4	10 40	200		
CL	EAR SQUARE SIE	EVE OPENIN	G	U.S. STANDARD SIEVE	SIZE		
			ADDITION	AL TESTS			
				RING LOG COLUMN HEA	DINGS)		
	(OTHE	R THAN TES			,		
	,	R THAN TES			,		
MAX-Maximum	Dry Density	R THAN TES	PM-Permeabili	ty PF	P- Pocket Penetrometer		
GS- Grain Size D	Dry Density istribution	R THAN TES	PM- Permeabili SG- Specific Gr	ty PF avity W.	P-Pocket Penetrometer A-Wash Analysis		
GS- Grain Size D SE- Sand Equival	Dry Density istribution ent	R THAN TES	PM- Permeabili SG- Specific Gr HA- Hydromete	ty PF avity W. er Analysis DS	P- Pocket Penetrometer A- Wash Analysis S- Direct Shear		
GS- Grain Size D SE- Sand Equival El- Expansion Inc	Dry Density istribution ent dex	R THAN TES	PM- Permeabili SG- Specific Gr	ty PF avity W. er Analysis DS .imits UC	P-Pocket Penetrometer A-Wash Analysis		
GS- Grain Size D SE- Sand Equival El- Expansion Inc	Dry Density istribution ent dex d Chloride	R THAN TES	PM- Permeabili SG- Specific Gr HA- Hydromete AL- Atterberg L	ty PF avity W. er Analysis DS .imits U0 Mi	P- Pocket Penetrometer A- Wash Analysis S- Direct Shear C- Unconfined Compression		
GS- Grain Size D SE- Sand Equival EI- Expansion Inc CHM- Sulfate and Content, pH,	Dry Density istribution ent dex d Chloride Resistivity	R THAN TES	PM- Permeabili SG- Specific Gr HA- Hydromete AL- Atterberg L RV- R-Value	ty PF avity W. er Analysis DS .imits UC Mi ion M·	P-Pocket Penetrometer A-Wash Analysis S-Direct Shear C-Unconfined Compression D-Moisture/Density		
GS-Grain Size D SE-Sand Equival EI-Expansion Inc CHM-Sulfate and	Dry Density istribution ent dex d Chloride Resistivity	THAN TES	PM- Permeabili SG- Specific Gr HA- Hydromete AL- Atterberg L RV- R-Value CN- Consolidat CP- Collapse Po HC- Hydrocolla	ty PF avity W, er Analysis DS .imits UC Mi ion M otential SC apse OI	P- Pocket Penetrometer A- Wash Analysis S- Direct Shear C- Unconfined Compression D- Moisture/Density - Moisture		
GS- Grain Size D GE- Sand Equival EI- Expansion Inc CHM- Sulfate and Content , pH, COR - Corrosivity	Dry Density istribution ent dex d Chloride Resistivity	THAN TES	PM- Permeabili SG- Specific Gr HA- Hydromete AL- Atterberg L RV- R-Value CN- Consolidat CP- Collapse Po	ty PF avity W, er Analysis DS .imits UC Mi ion M otential SC apse OI	P-Pocket Penetrometer A-Wash Analysis S-Direct Shear C-Unconfined Compression D-Moisture/Density -Moisture C-Swell Compression		
GS- Grain Size D SE- Sand Equival EI- Expansion Inc CHM- Sulfate and Content , pH, COR - Corrosivity	Dry Density istribution ent dex d Chloride Resistivity	THAN TES	PM- Permeabili SG- Specific Gr HA- Hydromete AL- Atterberg L RV- R-Value CN- Consolidat CP- Collapse Po HC- Hydrocolla	ty PF avity W, er Analysis DS .imits UC Mi ion M otential SC apse OI	P- Pocket Penetrometer A- Wash Analysis S- Direct Shear C- Unconfined Compression D- Moisture/Density - Moisture C- Swell Compression - Organic Impurities	BL1	

	500111											
PROJECT: CTE JOB NO: LOGGED BY:					DRILLER: SHEET DRILL METHOD: DRILLI SAMPLE METHOD: ELEVA	NG DATE:						
Depth (Feet) Bulk Semple Driven Type	Blows/Foot Dry Density (pd)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING LEGEND	Laboratory Tests						
	•				- Block or Chunk Sample							
- 5- 	•				– Bulk Sample							
 	•				 Standard Penetration Test 							
/ 	•				 Modified Split-Barrel Drive Sampler (Cal Sampler) 							
		₹.	•		– Groundwater Table							
-20					Soil Type or Classification Change ??							
25 			"SM"		Quotes are placed around classifications where the soils exist in situ as bedrock	GURE: BL2						
L					11							

	CTESO	TH			
PROJECT: CTE JOB NO: LOGGED BY:	Blythe Municipal Airport 40-3264 R. Ellerbusch	DRILLER:2R Drilling CME 75SHEETDRILL METHOD:8" Hollow Stem AugerDRILLSAMPLE METHOD:140 lb/30" AutohammerELEVA	NG DATE: 11/11/2015		
Depth (Feet) Bulk Sample Driven Type Blows/6 inches	Dry Density (pcf) Moisture (%) U.S.C.S. Symbol Graphic Log	BORING: B-1	Laboratory Tests		
		DESCRIPTION			
-0		10.5" AC over 12" Base			
$\begin{bmatrix} & - \\ - & - \end{bmatrix} \begin{bmatrix} & 8 \\ 9 \\ 9 \end{bmatrix}$	6.4 SM	Silty SAND, medium dense, moist, light brown.	М		
$\begin{bmatrix} -5 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	5.6	Poorly-graded SAND with Silt, loose, moist, light brown.	М		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SP 3.4	Poorly-graded SAND, medium dense, damp, light brown. Total Depth = 11.5 ft. below pavement surface. No Groundwater encountered. Bore hole backfilled with soil cuttings and capped with 10" of concrete.	M		
			B-1		

CTES	DUTH		
PROJECT: Blythe Municipal Airpor CTE JOB NO: 40-3264 LOGGED BY: R. Ellerbusch	DRILLER:2R Drilling CME 75SHEET:DRILL METHOD:8" Hollow Stem AugerDRILLINSAMPLE METHOD:140 lb/30" AutohammerELEVA"	1 of 1 IG DATE: 11/11/2015 TON:	
Depth (Feet) Bulk Sample Driven Type Blows/6 inches Dry Density (pcf) Moisture (%) U.S.C.S. Symbol	BORING: B-2	Laboratory Tests	
	DESCRIPTION		
	11" AC over 5" Base	CBR, MAX	
SP-SM	Poorly-graded SAND with Silt, dense, damp, light brown, trace gravel.	MD	
-5 - 7 - 10 17 104.5 2.5	Poorly-graded SAND, medium dense, damp, light brown, trace gravel.	MD	
$\begin{bmatrix} 10 \\ -10$	Poorly-graded SAND, dense, damp, light brown. Total Depth = 11.5 ft. below pavement surface. No Groundwater encountered. Bore hole backfilled with soil cuttings and capped with	MD	
	10" of concrete.		
 -20-			
- 25		B-2	

				C	T	S		TH		
PROJECT: CTE JOB NO: LOGGED BY:			Blythe Municipal Airpor 40-3264 R. Ellerbusch			rt		T: 1 of 1 LING DATE: 11/11/201 ATION:		
Depth (Feet)	Bulk Sample	ü	Blows/6 inches	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: B-3	Labo	ratory Tests
I	H	Ι	н	П	N		Ŭ	DESCRIPTION		
-0-								10" AC over 5" Base		
 			8 12 10		2.9	SP-SM		Poorly-graded SAND with Silt, medium dense, damp, light brown, trace gravel.		М
-5- 			3 2 3			SP		Poorly-graded SAND with Silt, loose, damp, light brown.		
-10		Π	4 8 12					Poorly-graded SAND, medium dense, damp, light brown.		
 - 15 	-							Total Depth = 11.5 ft. below pavement surface. No Groundwater encountered. Bore hole backfilled with soil cuttings and capped with 10" of concrete.		
				-			•			B-3

				C	T	S		TH		
PROJECT: CTE JOB NO: LOGGED BY:			Blythe M 40-3264 R. Ellert	pal Airpo	rt		EET: 1 of 1 LLING DATE: 11/10/2015 EVATION:			
Depth (Feet)	Bulk Sample		Blows/6 inches	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: B-4		pratory Tests
								DESCRIPTION		
-0-								6" Concrete		
			3 3 4		4.8	SP-SM		Poorly-graded SAND with Silt, loose, damp, light brown.		М
 -5- 			4 6 10		2.5	SP		Poorly-graded SAND, medium dense, damp, light brown, trace gravel.		М
-10	-		8 13 18		2.7			Poorly-graded SAND, dense, damp, light brown.		М
 - 15 								Total Depth = 11.5 ft. below pavement surface. No Groundwater encountered. Bore hole backfilled with soil cuttings and capped with 8" of concrete.		
										B-4

						V	Ŋ	TH	
PRO CTE LOG	JOI	B NC		Blythe Municipal Airpo 40-3264 R. Ellerbusch			rt	EET: 1 of 1 LLING DATE: 11/10/2015 VATION:	
Depth (Feet)	Bulk Sample	œ	Blows/6 inches	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: B-5	Laboratory Tests
						_		DESCRIPTION	
-0-								5.5" Concrete	
	N	Ζ	5 5 7	110.9	5.8	SP-SM		Poorly-graded SAND with Silt, loose, moist, light brown, trace gravel.	CHM WA (11% pass #200) MD
 - 5- 			4 6 8					Poorly-graded SAND with Silt, medium dense, damp, light brown.	
-10 	-	Τ	5 9 12		2.8	SP		Poorly-graded SAND, medium dense, damp, light brown. Total Depth = 11.5 ft. below pavement surface. No Groundwater encountered.	М
 -15 -20 	-							No Groundwater encountered. Bore hole backfilled with soil cuttings and capped with 8" of concrete.	
- 25	-								B-5

	CT	Sol	TH		
PROJECT: CTE JOB NO: LOGGED BY:	Blythe Municip 40-3264 R. Ellerbusch	pal Airport	DRILLER: 2R Drilling CME 75 SHEET DRILL METHOD: 8" Hollow Stem Auger DRILL SAMPLE METHOD: 140 lb/30" Autohammer ELEVA	ING DATE: 11/10/2013	
Depth (Feet) Bulk Sample Driven Type Blows/6 inches	Dry Density (pcf) Moisture (%)	U.S.C.S. Symbol Graphic Log	BORING: B-6	Laboratory Tests	
			DESCRIPTION		
-0		SP	6.25" Concrete		
		or	Poorly-graded SAND, damp, light brown.	CBR, MAX	
$\begin{bmatrix} 9 \\ 11 \\ 14 \end{bmatrix}$	104.7 3.1		Poorly-graded SAND, medium dense, damp, light brown, trace gravel.	MD	
$\begin{bmatrix} 5 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	103.1 2.0		Poorly-graded SAND, dense, dry, light brown, trace gravel.	MD	
-10 10 20 25	102.3 2.6		Poorly-graded SAND, dense, damp, light brown, trace gravel.	MD	
			Total Depth = 11.5 ft. below pavement surface. No Groundwater encountered. Bore hole backfilled with soil cuttings and capped with 8" of concrete.		
-1 5- 					
-20-					
25-				B-6	

				C	TĘ	S		TH			
CTE	PROJECT: CTE JOB NO: LOGGED BY:			Blythe Municipa 40-3264 R. Ellerbusch		oal Airpo	rt	-	T: 1 of 1 LING DATE: 11/10/2015 'ATION:		
Depth (Feet)	Bulk Sample	Driven Type	Blows/6 inches	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: B-7	Lab	oratory Tests	
								DESCRIPTION			
-0-								8.5" Concrete			
	-		7 5 3		6.5	SP		Poorly-graded SAND, loose, moist, light brown, trace gravel.		М	
-5- 	-	Ι	6 8 10		2.7			Poorly-graded SAND, medium dense, damp, light brown.		М	
10 	-		7 11 13		2.6			Poorly-graded SAND, medium dense, damp, light brown. Total Depth = 11.5 ft. below pavement surface. No Groundwater encountered.	-	М	
 1 5 								No Groundwater encountered. Bore hole backfilled with soil cuttings and capped with 10" of concrete.			
-25				1						B-7	

		C	TĘ	S		TH	
PROJECT: CTE JOB NO: LOGGED BY:		Blythe M 40-3264 R. Ellerbo	-	al Airpo	rt	DRILLER:2R Drilling CME 75SHEETDRILL METHOD:8" Hollow Stem AugerDRILLISAMPLE METHOD:140 lb/30" AutohammerELEVA	NG DATE: 11/10/2015
Depth (Feet) Bulk Sample Driven Type	Blows/6 inches	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: B-8	Laboratory Tests
	Ι	Γ	I		Ŭ	DESCRIPTION	
	10 14 13		5.9	SM		4" AC over 12" Base Silty SAND, medium dense, moist, light brown.	CBR, MAX WA (14% pass #200) M
	4 6 10		2.6	SP		Poorly-graded SAND, medium dense, damp, light brown.	WA (3% pass #200) M
-10 -100 -100	8 14 19		3.2			Poorly-graded SAND, dense, damp, light brown. Total Depth = 11.5 ft. below pavement surface. No Groundwater encountered. Bore hole backfilled with soil cuttings and capped with 8" of concrete.	M
-2 5							B-8

	CTES	DUTH	
PROJECT: CTE JOB NO: LOGGED BY:	Blythe Municipal Airpo 40-3264 R. Ellerbusch	DRILL METHOD: 8" Hollow Stem Auger DRIL	ET: 1 of 1 LING DATE: 11/10/2015 /ATION:
Depth (Feet) Bulk Sample Driven Type Blows/6 inches	Dry Density (pcf) Moisture (%) U.S.C.S. Symbol	BORING: B-9	Laboratory Tests
	I	DESCRIPTION	
-0		6" Concrete	
	SP-SM	Poorly-graded SAND with Silt, damp, light brown.	CBR, MAX
$\begin{bmatrix} - & - \\ - & - \end{bmatrix} \begin{bmatrix} 6 \\ 10 \\ 13 \end{bmatrix}$	103.4 3.3	Poorly-graded SAND with Silt, medium dense, damp, light brown.	MD
$\begin{bmatrix} 5 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	103.1 3.7 SP	Poorly-graded SAND, dense, damp, light brown.	MD
$\begin{bmatrix} -10^{-} \\ -1$	102.9 2.1	Poorly-graded SAND, very dense, damp, light brown, trace gravel. Total Depth = 11.5 ft. below pavement surface. No Groundwater encountered. Bore hole backfilled with soil cuttings and capped with 8" of concrete.	MD
 - 25			B-9

				C	TĘ	S		TH	
PRO CTE LOG	JOE	B NC		Blythe N 40-3264 R. Ellert	-	oal Airpo	rt	DRILLER:2R Drilling CME 75SHEETDRILL METHOD:8" Hollow Stem AugerDRILLSAMPLE METHOD:140 lb/30" AutohammerELEVA	NG DATE: 11/10/2015
Depth (Feet)	Bulk Sample	Driven Type	Blows/6 inches	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: B-10	Laboratory Tests
-0-								DESCRIPTION	
 			2 2 3		7.5	SM		5.75" Concrete Silty SAND, loose, moist, light brown.	WA (14% pass #200) M
-5- 			5 7 8		3.7	SP		Poorly-graded SAND, medium dense, damp, light brown.	М
-10 -	-		5 11 16		3.1			Poorly-graded SAND, medium dense, damp, light brown. Total Depth = 11.5 ft. below pavement surface. No Groundwater encountered. Bore hole backfilled with soil cuttings and capped with 8" of concrete.	M
									B-10

PROJECT: CTE JOB NO: LOGGED BY:	Blythe Municipal Airport 40-3264 R. Ellerbusch	DRILLER: 2R Drilling CME 75 SHEET	NG DATE: 11/10/2015
Depth (Feet) Bulk Sample Driven Type Blows/6 inches	Dry Density (pcf) Moisture (%) U.S.C.S. Symbol Graphic Log	BORING: B-11 DESCRIPTION	Laboratory Tests
$\begin{array}{c} 0 \\ \hline \\$	5.1 SP-SM	7" Concrete Poorly-graded SAND with Silt, loose, damp, light brown, trace gravel.	М
-5 - 5 = 5 = 5 = 5 = 11	SP 2.0	Poorly-graded SAND, medium dense, damp, light brown.	М
-10^{-1} -10^{-1}	2.0	Poorly-graded SAND, medium dense, damp, light brown. Total Depth = 11.5 ft. below pavement surface. No Groundwater encountered. Bore hole backfilled with soil cuttings and capped with 8" of concrete.	М
 - 25			B-11

	CTES	DUTH	
PROJECT: CTE JOB NO: LOGGED BY:	Blythe Municipal Airport 40-3264 R. Ellerbusch	DRILLER:2R Drilling CME 75SHEETDRILL METHOD:8" Hollow Stem AugerDRILLISAMPLE METHOD:140 lb/30" AutohammerELEVA	NG DATE: 11/11/2015
Depth (Feet) Bulk Sample Driven Type Blows/6 inches	Dry Density (pcf) Moisture (%) U.S.C.S. Symbol	BORING: B-12	Laboratory Tests
		DESCRIPTION	
$\begin{bmatrix} 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	2.6 SM	(Dirt surface) Silty SAND, medium dense, damp, brown, scattered gravel.	М
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Poorly-graded SAND, medium dense, dry, trace gravel.	М
-10- 9 11 15 -	2.5	Poorly-graded SAND, medium dense, damp, light brown. Total Depth = 11.5 ft. below pavement surface. No Groundwater encountered. Bore hole backfilled with soil cuttings and capped with asphalt patch.	М
-20- - 25-			B-12

			C	TĘ	S		TH	
PROJE CTE J		IO:	Blythe M 40-3264	-	oal Airpo	rt	DRILLER:2R Drilling CME 75SHEETDRILL METHOD:8" Hollow Stem AugerDRILLI	: 1 of 1 NG DATE: 11/11/2015
LOGG	ED F	BY:	R. Eller	busch	1	1	SAMPLE METHOD: 140 lb/30" Autohammer ELEVA	TION:
	Bulk Sample Driven Tvpe	Blows/6 inches	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: B-13	Laboratory Tests
							DESCRIPTION	
-0-	+						2.5" AC over 10" Base	
	П	7			SM		Silty SAND, medium dense, moist, light brown.	
		7 5		6.0				М
	Γ							
-								
-5-		2			SP			
		3 6			SP		Poorly-graded SAND, medium dense, damp, light brown.	
	μ	9		2.5				М
-10-	Π	3 7 10					Poorly-graded SAND, medium dense, dry, light brown.	
 - 15- -							Total Depth = 11.5 ft. below pavement surface. No Groundwater encountered. Bore hole backfilled with soil cuttings and capped with asphalt patch.	
-2 5				1				B-13

PROJECT: CTE JOB NO: LOGGED BY:	Blythe Municipa 40-3264 R. Ellerbusch		J	DRILLER:2R Drilling CME 75SHDRILL METHOD:8" Hollow Stem AugerDI	HEET: RILLING DAT LEVATION:	1 of 1 FE: 11/11/2015
Depth (Feet) Bulk Sample Driven Type Blows/6 inches	Dry Density (pcf) Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: B-14	Lal	poratory Tests
				DESCRIPTION		
-0				2.5" AC over 8" Base		
$\begin{bmatrix} 3 \\ 4 \\ 4 \end{bmatrix}$	6.1	SM		Silty SAND, loose, moist, light brown, trace gravel.		М
-5 - 4 8 11		SP		Poorly-graded SAND, medium dense, damp, light brown, trace gravel.		
-10- 7 13 15 $-15 -15 -20 -20 -20 -22 -25-$	2.5			Poorly-graded SAND, medium dense, damp, light brown,. Total Depth = 11.5 ft. below pavement surface. No Groundwater encountered. Bore hole backfilled with soil cuttings and capped with asphalt patch.		М

APPENDIX B

LABORATORY METHODS AND RESULTS

APPENDIX B LABORATORY METHODS AND RESULTS

Laboratory tests were performed on selected soil samples to evaluate their engineering properties. Tests were performed following test methods of the American Society for Testing and Materials (ASTM), or other accepted standards. The following presents a brief description of the various test methods used. Laboratory results are presented in the following section of this Appendix.

California Bearing Ratio

Laboratory CBR tests were performed on selected soil samples in accordance with ASTM D 1883. The test specimens were saturated during testing.

California Bearing Ratio of In-Place Soils

Field CBR tests were performed at selected boring locations. The tests were conducted in accordance with ASTM D 4429.

Chemical Analysis

Soil materials were collected and tested for Sulfate and Chloride content, pH, by EPA methods and Resistivity by Caltrans test methods.

Classification

Soils were classified visually according to the Unified Soil Classification System. Visual classifications were supplemented by laboratory testing of selected samples according to ASTM D 2487.

In-Place Moisture/Density

The in-place moisture content and dry unit weight of selected relatively undisturbed samples in accordance with ASTM D 2216 and D 2937, respectively.

Material Finer than #200 Sieve by Washing.

200 washes were performed on selected samples in accordance with ASTM D 1140.

Moisture and Density Relations (Standard Effort)

Laboratory maximum dry density and optimum moisture content were evaluated on selected soil samples in accordance with ASTM D 698.

California Bearing Ratio Report -ASTM D1883

	Blythe Municipal Airport Pavement Rehab
Job Number:	40-3264
Lab Number:	25788
Date Sampled:	11/10/2015
Date Tested:	11/19/2015
Location:	B-2 @ 1' - 5'
Sample Description:	Light Brown/Tan Sand
Sample Description:	Light Brown/Tan Sand

Compaction Data:	Mold 1	Mold 2	Mold 3
# of Blows:	<u>56</u>	<u>25</u>	<u>10</u>
Wt. Mold & Soil:	8330.6	8115.3	7915.8
Wt. Mold:	4216.9	4210.0	4211.3
Wt. Wet Soil:	4113.7	3905.3	3704.5
Wet Density (PCF):	120.8	114.6	108.7
Dry Density (PCF):	113.6	107.8	102.3
% Compaction:	99.2	94.2	89.3
CBR, Percent @ 0.1"	20.9	15.2	9.7
CBR, Percent @ 0.2"	18.7	14.3	8.2

Soak & Swell Data:	Mold 1	Mold 2	Mold 3
Initial Height (in.):	4.58	4.58	4.58
Initial Reading (in):	0.0000	0.0000	0.0000
96hr:	0.0000	0.0000	0.0000
Swell (in.):	0.0000	0.0000	0.0000
Percent Swell:	0.0	0.0	0.0

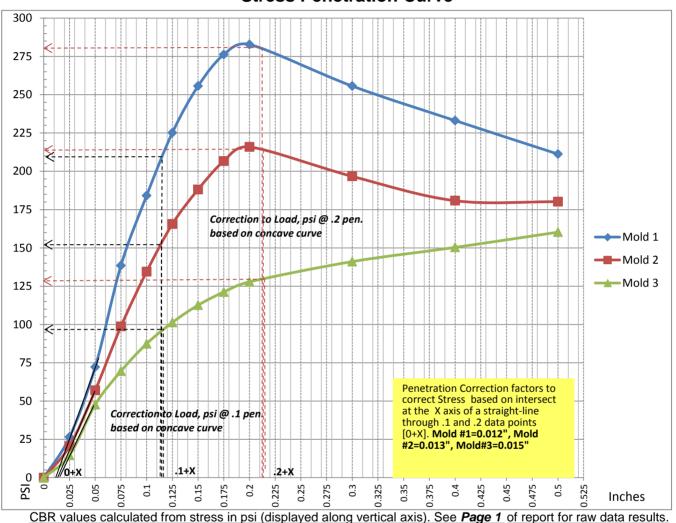
	L	oad In Pound	s
Penetration Data:	Mold 1	Mold 2	Mold 3
0.025	80	62	44
0.050	218	172	144
0.075	418	298	210
0.100	556	406	264
0.125	680	500	306
0.150	772	568	340
0.175	834	624	366
0.200	854	652	386
0.300	772	594	426
0.400	704	546	454
0.500	638	544	484

 Tested By:
 RJP

 Date Completed:
 11/24/2015

Maximum Density Results				
Optim	um Moist (%)	6.3		
Max	Density (pcf)	114.5		
c	% Remolded:	NA		
Densit	ty of Remold:	NA		
Ini	6.3			
CBR N	/lold Volume:	0.0751		
Μ	oisture Top	1"		
Mold 1	Wet. w/Tare:	1208.6		
	Dry w/Tare:	1099.8		
	Tare:	172.4		
	Moist %:	11.7		
Mold 2	Wet. w/Tare:	1142.9		
	Dry w/Tare:	1025.5		
	Tare:	176.9		
	Moist %:	13.8		
Mold 3	Wet. w/Tare:	1110.6		
	Dry w/Tare:	981.5		
	Tare:	156.5		
	Moist %:	15.6		

Diameter of Piston:	1.96
Area of Piston:	3.02
Weight of Surcharge	10lbs

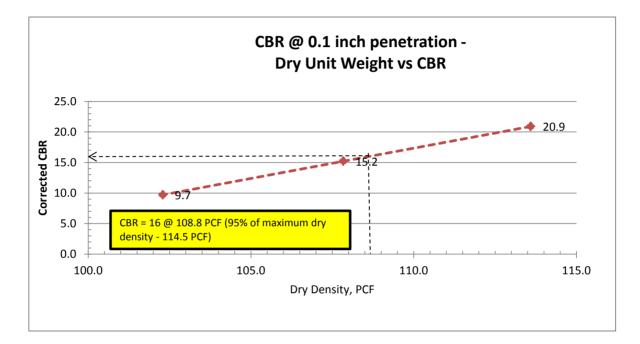

Load In PSI			
Mold 1	Mold 2	Mold 3	
26	21	15	
72	57	48	
138	99	70	
184	134	87	
225	166	101	
256	188	113	
276	207	121	
283	216	128	
256	197	141	
233	181	150	
211	180	160	

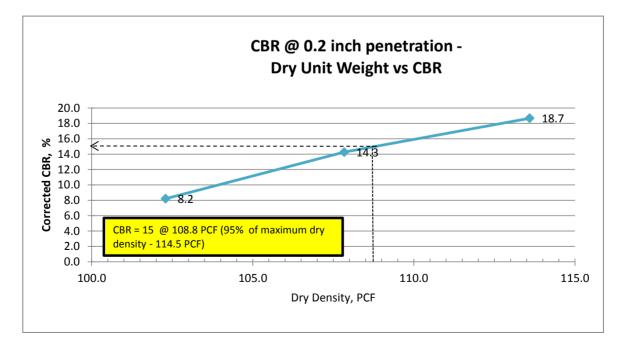
Reviewed By:	Erik Campbell
Date:	11/24/2015

Inspection | Testing | Geotechnical | Environmental & Construction Engineering | Civil Engineering | Surveying

California Bearing Ratio Report -ASTM D1883

Stress Penetration Curve


NOTE: The load penetration curve is necessary to determine if adjustments must be made to 0.1" and 0.2" penetration readings due to surface irregularities or concave upward curves. Any corrected values obtained from this graph will be listed below.


Corrected Load Penetration Values (psi)				
	0.1"		0.	2"
Mold ID	Plotted	Corrected	Plotted	Corrected
Mold 1	184	209	283	280
Mold 2	134	152	216	214
Mold 3	87	97	128	123

CBR @ Various Compaction Percentages			
	0.1"	0.2"	
90% (Mold #3)	9%	10%	*
95% (Mold #2)	16%	15%	*
100% (Mold #3)	21%	19%	*

California Bearing Ratio Report - ASTM D1883 Graph of Dry Unit Weight vs. CBR*

California Bearing Ratio Report -ASTM D1883

Blythe Municipal Airport Pavement Rehab
40-3264
25802
11/10/2015
11/27/2015
B-6 @ 1-5'
Light Brown/Tan Sand

Compaction Data:	Mold 1	Mold 2	Mold 3
# of Blows:	<u>60</u>	<u>29</u>	<u>13</u>
Wt. Mold & Soil:	8612.6	8381.8	8175.6
Wt. Mold:	4216.7	4209.6	4211.4
Wt. Wet Soil:	4395.9	4172.2	3964.2
Wet Density (PCF):	129.0	122.5	116.4
Dry Density (PCF):	117.3	111.3	105.7
% Compaction:	100.2	95.1	90.4
CBR, Percent @ 0.1"	39.4	24.2	9.1
CBR, Percent @ 0.2"	40.9	25.7	10.9

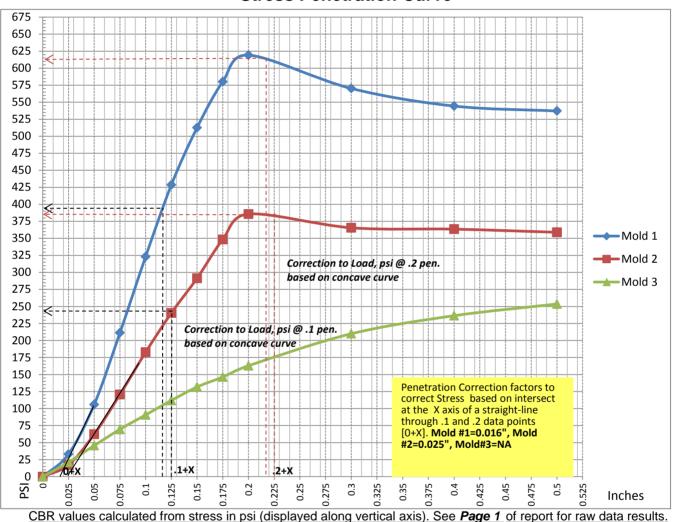
Soak & Swell Data:	Mold 1	Mold 2	Mold 3
Initial Height (in.):	4.58	4.58	4.58
Initial Reading (in):	0.0000	0.0000	0.0000
96hr:	0.0000	0.0000	0.0000
Swell (in.):	0.0000	0.0000	0.0000
Percent Swell:	0.0	0.0	0.0

	Load In Pounds		
Penetration Data:	Mold 1	Mold 2	Mold 3
0.025	100	52	64
0.050	320	188	138
0.075	638	364	210
0.100	976	552	274
0.125	1294	726	338
0.150	1548	880	398
0.175	1752	1052	442
0.200	1870	1165	492
0.300	1722	1104	634
0.400	1644	1098	714
0.500	1622	1084	766

Tested By:Ryan PowneyDate Completed:12/2/2015

Maximum Density Results		
Optim	um Moist (%)	10.0
Max	Density (pcf)	117.0
c	% Remolded:	NA
Densit	ty of Remold:	NA
Initial Moisture:		10.0
CBR N	/lold Volume:	0.0751
M	1"	
Mold 1	Wet. w/Tare:	1129.9
	Dry w/Tare:	1023.7
	Tare:	168
	Moist %:	
Mold 2	Wet. w/Tare:	1108.2
	Dry w/Tare:	995.8
	Tare:	162.5
	Moist %:	13.5
Mold 3	Wet. w/Tare:	1110.3
	Dry w/Tare:	979.9
	Tare:	162
	Moist %:	15.9

Diameter of Piston:	1.96
Area of Piston:	3.02
Weight of Surcharge	15 lbs

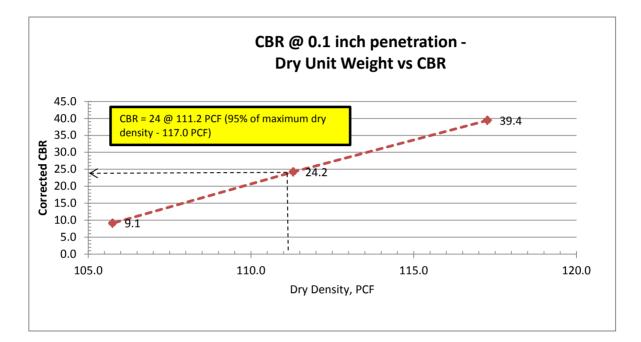

Load In PSI		
Mold 1	Mold 2	Mold 3
33	17	21
106	62	46
211	121	70
323	183	91
428	240	112
513	291	132
580	348	146
619	386	163
570	366	210
544	364	236
537	359	254

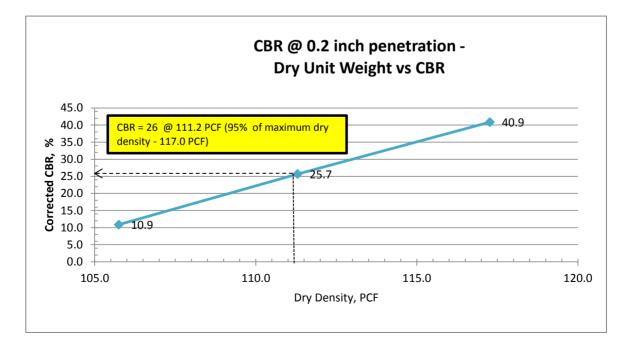
Reviewed By:	Erik Campbell
Date:	12/2/2015

Inspection | Testing | Geotechnical | Environmental & Construction Engineering | Civil Engineering | Surveying

California Bearing Ratio Report -ASTM D1883

Stress Penetration Curve


NOTE: The load penetration curve is necessary to determine if adjustments must be made to 0.1" and 0.2" penetration readings due to surface irregularities or concave upward curves. Any corrected values obtained from this graph will be listed below.


Corrected Load Penetration Values (psi)				
	0.1"		0.	2"
Mold ID	Plotted	Corrected	Plotted	Corrected
Mold 1	323	<u>394</u>	619	<u>613</u>
Mold 2	183	242	386	385
Mold 3	91	91	163	163

CBR @ Various Compaction Percentages					
0.1" 0.2"					
90% (Mold #3)	9%	<mark>11%</mark>			
95% (Mold #2)	24%	<mark>26%</mark>			
100% (Mold #1)	39%	<mark>41%</mark>			

California Bearing Ratio Report - ASTM D1883 Graph of Dry Unit Weight vs. CBR*

California Bearing Ratio Report -ASTM D1883

Blythe Municipal Airport Pavement Rehab		
40-3264		
25788		
11/10/2015		
11/19/2015		
B-8 @ 1' - 5'		
Light Brown/Tan Silty Sand		

Compaction Data:	Mold 1	Mold 2	Mold 3
# of Blows:	<u>56</u>	<u>25</u>	<u>10</u>
Wt. Mold & Soil:	8629.9	8435.9	8202.9
Wt. Mold:	4320.0	4323.9	4327.9
Wt. Wet Soil:	4309.9	4112.0	3875.0
Wet Density (PCF):	126.5	120.7	113.8
Dry Density (PCF):	116.4	111.0	104.6
% Compaction:	98.9	94.3	88.9
CBR, Percent @ 0.1"	50.1	18.4	7.1
CBR, Percent @ 0.2"	36.3	16.1	6.5

Soak & Swell Data:	Mold 1	Mold 2	Mold 3
Initial Height (in.):	4.58	4.58	4.58
Initial Reading (in):	0.0000	0.0000	0.0000
96hr:	0.0000	0.0000	0.0000
Swell (in.):	0.0000	0.0000	0.0000
Percent Swell:	0.0	0.0	0.0

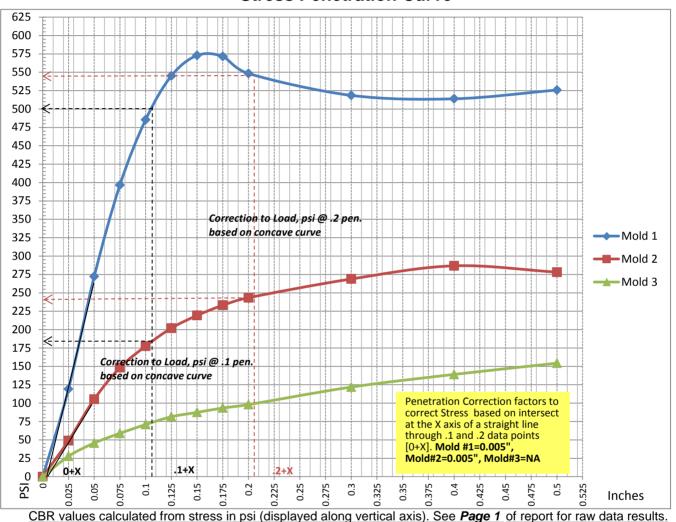
	Load In Pounds		
Penetration Data:	Mold 1	Mold 2	Mold 3
0.025	360	148	84
0.050	822	318	138
0.075	1198	448	178
0.100	1466	536	214
0.125	1646	610	246
0.150	1730	662	264
0.175	1726	704	282
0.200	1656	735	296
0.300	1566	812	368
0.400	1552	866	420
0.500	1588	840	466

 Tested By:
 RJP

 Date Completed:
 11/24/2015

Maximum Density Results				
Optim	um Moist (%)	8.7		
Max	Density (pcf)	117.7		
c	% Remolded:	NA		
Densit	ty of Remold:	NA		
Ini	8.7			
	CBR Mold Volume: 0.0751			
M	oisture Top	1"		
Mold 1	Wet. w/Tare:	1168.2		
	Dry w/Tare:	1043.3		
	Tare:	168		
	Moist %:	14.3		
Mold 2	Wet. w/Tare:	1048.3		
	Dry w/Tare:	930.3		
	Tare:	162.6		
	Moist %:	15.4		
Mold 3	Wet. w/Tare:	1065.2		
	Dry w/Tare:	944.5		
	Tare:	162		
	Moist %:	15.4		

Diameter of Piston:	1.96
Area of Piston:	3.02
Weight of Surcharge	10lbs

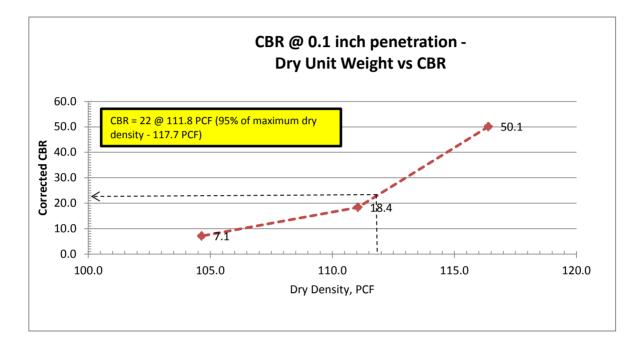

Load In PSI				
Mold 1	Mold 1 Mold 2 Mo			
119	49	28		
272	105	46		
397	148	59		
485	177	71		
545	202	81		
573	219	87		
572	233	93		
548	243	98		
519	269	122		
514	287	139		
526	278	154		
uisuus J. P ara – Esil Osaarahall				

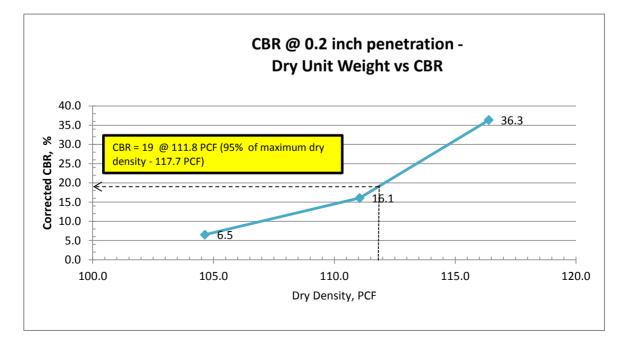
Reviewed By:	Erik Campbell
Date:	11/24/2015

Inspection | Testing | Geotechnical | Environmental & Construction Engineering | Civil Engineering | Surveying

California Bearing Ratio Report -ASTM D1883

Stress Penetration Curve


NOTE: The load penetration curve is necessary to determine if adjustments must be made to 0.1" and 0.2" penetration readings due to surface irregularities or concave upward curves. Any corrected values obtained from this graph will be listed below.


Corrected Load Penetration Values (psi)				
	0.1"		0.	2"
Mold ID	Plotted	Corrected	Plotted	Corrected
Mold 1	485	501	548	<u>545</u>
Mold 2	177	184	243	241
Mold 3	71	71	98	<u>98</u>

CBR @ Various Compaction Percentages					
0.1" 0.2"					
90% (Mold # 3)	9%	8%	*		
95% (Mold #2)	22%	19%	*		
100% (Mold #1)	<mark>58%</mark>	42%	*		

California Bearing Ratio Report - ASTM D1883 Graph of Dry Unit Weight vs. CBR*

California Bearing Ratio Report -ASTM D1883

Blythe Municipal Airport Pavement Rehab
40-3264
25802
11/10/2015
11/25/2015
B-9 @ 1-5'
Light Brown/Tan Sand

Compaction Data:	Mold 1	Mold 2	Mold 3
# of Blows:	<u>60</u>	<u>29</u>	<u>13</u>
Wt. Mold & Soil:	8717.3	8501.0	8279.6
Wt. Mold:	4320.0	4323.9	4327.9
Wt. Wet Soil:	4397.3	4177.1	3951.7
Wet Density (PCF):	129.1	122.6	116.0
Dry Density (PCF):	117.3	111.4	105.4
% Compaction:	100.1	95.1	90.0
CBR, Percent @ 0.1"	43.0	26.0	11.9
CBR, Percent @ 0.2"	39.7	25.7	13.4

Soak & Swell Data:	Mold 1	Mold 2	Mold 3
Initial Height (in.):	4.58	4.58	4.58
Initial Reading (in):	0.0000	0.0000	0.0000
96hr:	0.0000	0.0000	0.0000
Swell (in.):	0.0000	0.0000	0.0000
Percent Swell:	0.0	0.0	0.0

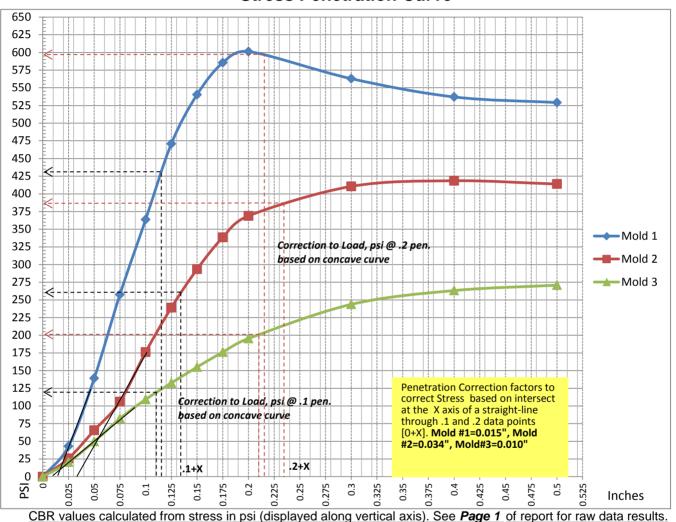
	Load In Pounds		
Penetration Data:	Mold 1	Mold 2	Mold 3
0.025	130	78	62
0.050	420	198	150
0.075	778	320	248
0.100	1098	532	330
0.125	1422	722	400
0.150	1632	886	468
0.175	1768	1022	532
0.200	1816	1114	590
0.300	1700	1240	736
0.400	1622	1264	795
0.500	1598	1250	818

Tested By:Ryan PowneyDate Completed:12/2/2015

Maximum Density Results			
Optim	um Moist (%)	10.0	
Max	Density (pcf)	117.2	
c	% Remolded:	NA	
Densit	ty of Remold:	NA	
Initial Moisture: 10.0			
CBR N	/lold Volume:	0.0751	
M	oisture Top	1"	
Mold 1	Wet. w/Tare:	1000.5	
	Dry w/Tare:	907.9	
	Tare: Moist %:		
Mold 2	Wet. w/Tare:	1031.0	
	Dry w/Tare:	929.7	
	Tare:	177.0	
	Moist %:	13.5	
Mold 3	Wet. w/Tare:	1022.1	
	Dry w/Tare:	905.1	
	Tare:	156.6	
	Moist %:	15.6	

Diameter of Piston:	1.96
Area of Piston:	3.02
Weight of Surcharge	15 lbs.

Load In PSI				
Mold 1	Mold 2	Mold 3		
43	26	21		
139	66	50		
258	106	82		
364	176	109		
471	239	132		
540	293	155		
585	338	176		
601	369	195		
563	411	244		
537	419	263		
529	414	271		

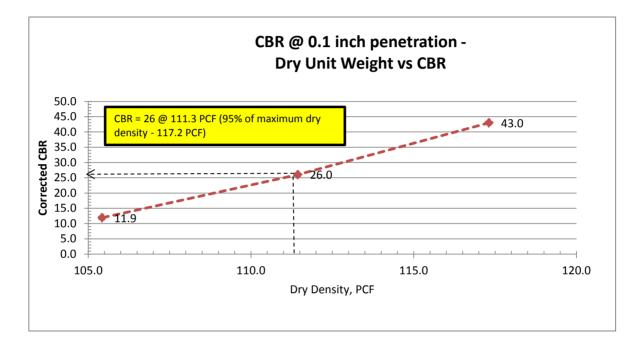

Reviewed By:Erik CampbellDate:12/2/2015

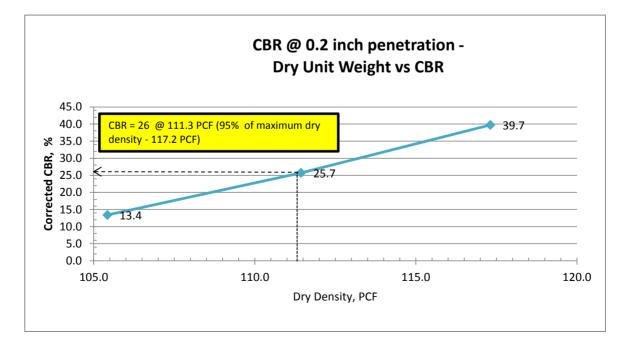
0+X

Inspection | Testing | Geotechnical | Environmental & Construction Engineering | Civil Engineering | Surveying

California Bearing Ratio Report -ASTM D1883

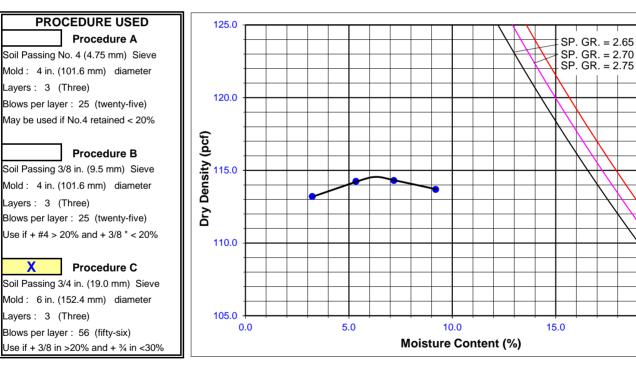
Stress Penetration Curve

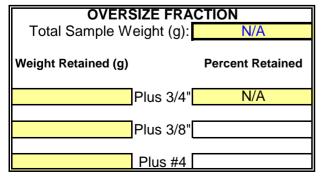

NOTE: The load penetration curve is necessary to determine if adjustments must be made to 0.1" and 0.2" penetration readings due to surface irregularities or concave upward curves. Any corrected values obtained from this graph will be listed below.


Corrected Load Penetration Values (psi)				
	0.1"		0.2"	
Mold ID	Plotted	Corrected	Plotted	Corrected
Mold 1	364	430	601	596
Mold 2	176	260	369	386
Mold 3	109	119	195	201

CBR @ Various Compaction Percentages				
0.1" 0.2"				
90% (Mold #3)	12%	<mark>13%</mark>		
95% (Mold #2)	26%	<mark>26%</mark>		
100% (Mold #1)	43%	40%		

California Bearing Ratio Report - ASTM D1883 Graph of Dry Unit Weight vs. CBR*




LABORATORY COMPACTION OF SOIL (MOD.)

ASTM D 698

Project Name:	Blythe Municipal Airport	Tested By :	RJP	Date: 11/18/2015
Project No.:	40-3264	Calculated By :	RJP	Date: 11/18/2015
Lab No.:	25788	Sampled By:	RE	Date: 11/10/2015
Sample No. :	B-2	Depth (ft.)	1' - 5'	
Sample Description:	Light Brown/Tan Beach Sand	_		

Moisture Added (ml)	100	150	200	50	
TEST NO.	1	2	3	4	Preparation Method: Dry X Moist
Wt. Comp. Soil + Mold (g)	3850	3882	3907	3797	Moist
Wt. of Mold (g)	2037	2037	2037	2037	
Net Wt. of Soil (g)	1812	1845	1869	1760	Mechanical Rammer
	B-18	B-6	B-5		Manual Rammer X
Wet Wt. of Soil + Cont. (g)	838.4	905.0	890.7	871.3	
Dry Wt. of Soil + Cont. (g)	805.9	857.5	831.0	850.0	Hammer Weight: 5.0 lb.
Wt. of Container (g)	197.9	195.8	181.8	190.1	
					Drop: 12.00 in.
Moisture Content (%)	5.3	7.2	9.2	3.2	
Wet Density (pcf)	120.3	122.5	124.1	116.8	Mold Volume (ft. ³): 0.03320
Dry Density (pcf)	114.2	114.3	113.7	113.2	

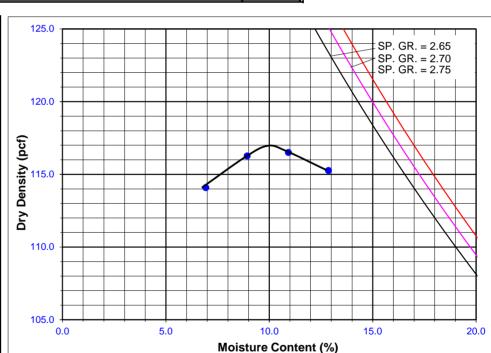
Maximum Dry Density (pcf)	114.5				
Optimum Moisture Content (%)	6.3				
tock Correction Applied pe <u>r ASTM D 471</u>					
Maximum Dry Density (pcf)	N/A				

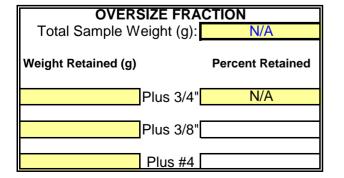
Optimum Moisture Content (%)

N/A

20.0

LABORATORY COMPACTION OF SOIL (MOD.)


ASTM D 698


Project Name:	Blythe Municipal Airport	Tested By :	RJP	Date: 11/24/2015
Project No.:	40-3264	Calculated By :	RJP	Date: 11/24/2015
Lab No.:	25802	Sampled By:	RE	Date: 11/10/2015
Sample No. :	B-6	Depth (ft.)	1' - 5'	
Sample Description:	Light Brown/Tan Sand			

Moisture Added (ml)	150	200	250	300	0]
TEST NO.	1	2	3	4	\wedge	Bronaration Mathedu Dry X
Wt. Comp. Soil + Mold (g)	3868	3938	3977	3990		Preparation Method: Dry X Moist
Wt. of Mold (g)	2031	2031	2031	2031		
Net Wt. of Soil (g)	1837	1907	1946	1959	\lor	Mechanical Rammer
	c-5	c-6	c-4	c-1	c-2	Manual Rammer X
Wet Wt. of Soil + Cont. (g)	907.9	1026.4	1016.0	1009.8	1093.6	
Dry Wt. of Soil + Cont. (g)	860.5	955.1	932.9	914.5	1085.1	Hammer Weight: 5.0 lb.
Wt. of Container (g)	177.0	156.7	172.6	173.9	162.2	
						Drop: 12.00 in.
Moisture Content (%)	6.9	8.9	10.9	12.9	0.9	
Wet Density (pcf)	122.0	126.6	129.2	130.1	\sim	Mold Volume (ft. ³): 0.03320
Dry Density (pcf)	114.1	116.3	116.5	115.3	\frown	

PROCEDURE USED Procedure A Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 3 (Three) Blows per layer: 25 (twenty-five) May be used if No.4 retained < 20% Procedure B Soil Passing 3/8 in. (9.5 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 3 (Three) Blows per layer: 25 (twenty-five) Use if + #4 > 20% and + 3/8 " < 20% Procedure C X Soil Passing 3/4 in. (19.0 mm) Sieve

Mold : 6 in. (152.4 mm) diameter Layers : 3 (Three) Blows per layer : 56 (fifty-six) Use if + 3/8 in >20% and + ¾ in <30%

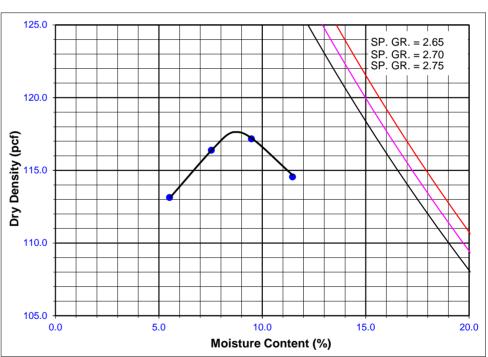
Maximum Dry Density (pcf)	117.0
Optimum Moisture Content (%)	10.0
<pre>cock Correction Applied pe</pre>	r ASTM D 4718
Maximum Dry Density (pcf)	N/A

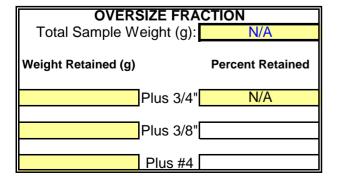
Optimum Moisture Content (%)

N/A

LABORATORY COMPACTION OF SOIL (MOD.)

ASTM D 698


Calculated By :	RJP Date:	11/18/2015
Sampled By:	RE Date:	11/10/2015
Depth (ft.)	2' - 5'	
250		
	Depth (ft.)	Sampled By: <u>RE</u> Date: Depth (ft.) <u>2' - 5'</u>


MolStare / ladea (III)	100	100	200	200	
TEST NO.	1	2	3	4	Bronaration Mathedu Dry X
Wt. Comp. Soil + Mold (g)	3835	3922	3969	3960	Preparation Method: Dry X Moist
Wt. of Mold (g)	2037	2037	2037	2037	
Net Wt. of Soil (g)	1798	1885	1932	1923	Mechanical Rammer
					Manual Rammer X
Wet Wt. of Soil + Cont. (g)	854.9	849.2	861.3	841.3	
Dry Wt. of Soil + Cont. (g)	820.3	802.9	803.3	774.3	Hammer Weight: 5.0 lb.
Wt. of Container (g)	193.4	188.5	191.5	189.8	
					Drop: 12.00 in.
Moisture Content (%)	5.5	7.5	9.5	11.5	[
Wet Density (pcf)	119.4	125.2	128.3	127.7	Mold Volume (ft. ³): 0.03320
Dry Density (pcf)	113.1	116.4	117.2	114.5	

PROCEDURE USED X Procedure A Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 3 (Three) 120.0 Blows per layer: 25 (twenty-five) May be used if No.4 retained < 20% Dry Density (pcf) Procedure B Soil Passing 3/8 in. (9.5 mm) Sieve 115.0 Mold: 4 in. (101.6 mm) diameter Layers: 3 (Three) Blows per layer: 25 (twenty-five) Use if + #4 > 20% and + 3/8 " < 20% 110.0 **Procedure C** Soil Passing 3/4 in. (19.0 mm) Sieve Mold: 6 in. (152.4 mm) diameter 105.0 · Layers: 3 (Three)

Blows per layer: 56 (fifty-six)

Use if + 3/8 in >20% and + 3/4 in <30%

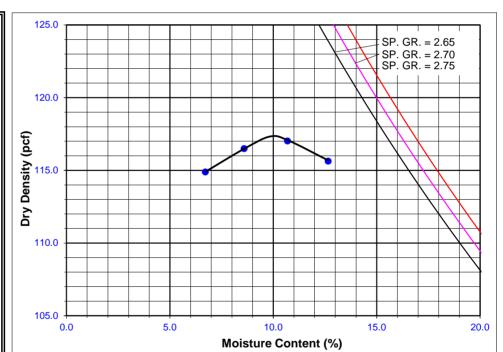
Maximum Dry Density (pcf)	117.7
Optimum Moisture Content (%)	8.7
<pre> cock Correction Applied pe </pre>	r ASTM D 4718
Maximum Dry Density (pcf)	N/A

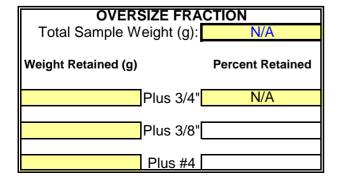
Optimum Moisture Content (%)

N/A

LABORATORY COMPACTION OF SOIL (MOD.)

ASTM D 698


Project Name:	Blythe Municipal Airport	Tested By : RJP Date:	11/24/2015
Project No.:	40-3264	Calculated By : RJP Date:	11/24/2015
Lab No.:	25802	Sampled By: <u>RE</u> Date:	11/10/2015
Sample No. :	B-9	Depth (ft.) <u>1' - 5'</u>	
Sample Description:	Light Brown/Tan Sand		


Moisture Added (ml)	150	200	250	300	0	
TEST NO.	1	2	3	4		Dremonation Mathedu Dry X
Wt. Comp. Soil + Mold (g)	3884	3942	3988	3999		Preparation Method: Dry X Moist
Wt. of Mold (g)	2037	2037	2037	2037		
Net Wt. of Soil (g)	1846	1905	1951	1962	\vee \setminus	Mechanical Rammer
						Manual Rammer X
Wet Wt. of Soil + Cont. (g)	835.7	959.6	1027.1	995.0	1020.9	
Dry Wt. of Soil + Cont. (g)	793.3	897.0	944.7	902.5	1014.8	Hammer Weight: 5.0 lb.
Wt. of Container (g)	162.1	168.2	174.1	171.8	158.9	
						Drop: 12.00 in.
Moisture Content (%)	6.7	8.6	10.7	12.7	0.7	
Wet Density (pcf)	122.6	126.5	129.5	130.3	\sim	Mold Volume (ft. ³): 0.03320
Dry Density (pcf)	114.9	116.5	117.0	115.6	\bigtriangleup	

Procedure A Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 3 (Three) Blows per layer: 25 (twenty-five) May be used if No.4 retained < 20% Procedure B Soil Passing 3/8 in. (9.5 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 3 (Three) Blows per layer: 25 (twenty-five) Use if + #4 > 20% and + 3/8 " < 20%

PROCEDURE USED

Procedure C X Soil Passing 3/4 in. (19.0 mm) Sieve Mold: 6 in. (152.4 mm) diameter Layers: 3 (Three) Blows per layer: 56 (fifty-six) Use if + 3/8 in >20% and + 3/4 in <30%

Maximum Dry Density (pcf)	117.2
Optimum Moisture Content (%)	10.0
tock Correction Applied pe	r ASTM D 4718
Maximum Dry Density (pcf)	N/A

Optimum Moisture Content (%)

N/A	
N/A	

Client Name: Construction Testing & Eng., Inc. Contact: Robert Ellerbusch Address: 14538 Meridian Parkway, Suite A Riverside, CA 92518 Analytical Report: Page 1 of 3 Project Name: Const. Test.-Soils Project Number: [none]

Yes

Work Order Number: B5K1232

Received on Ice (Y/N):

Temp: 22 °C

Report Date: 22-Nov-2015

Attached is the analytical report for the sample(s) received for your project. Below is a list of the individual sample descriptions with the corresponding laboratory number(s). Also, enclosed is a copy of the Chain of Custody document (if received with your sample(s)). Please note any unused portion of the sample(s) may be responsibly discarded after 30 days from the above report date, unless you have requested otherwise.

Thank you for the opportunity to serve your analytical needs. If you have any questions or concerns regarding this report please contact our client service department.

Sample Identification

Lab Sample #	Client Sample ID	Matrix	Date Sampled	By	Date Submitted	By
B5K1232-01	40-3264: B-5 @ 1-5'	Soil	11/10/15 12:00	Rob Ellerbusch	11/12/15 15:53	Robert Ellerbusch

mailing P.O. Box 432 Riverside, CA 92502-0432 *location* 6100 Quail Valley Court Riverside, CA 92507.0704 P 951 653 3351 F 951 653 1662 www.babcocklabs.com NELAP no. 02101CA CA Elap no. 2698 EPA no. CA00102

Client Name: Construction Testing & Eng., Inc. Contact: Robert Ellerbusch Address: 14538 Meridian Parkway, Suite A Riverside, CA 92518 Analytical Report: Page 2 of 3 Project Name: Const. Test.-Soils Project Number: [none]

Yes

Work Order Number: B5K1232

Received on Ice (Y/N):

Sampled Date/Time

11/10/15 12:00

Temp: 22 °C

Laboratory Reference Number B5K1232-01

Sample Description 40-3264: B-5 @ 1-5'

Report Date: 22-Nov-2015

<u>Matrix</u> Soil Received Date/Time 11/12/15 15:53

Analyte(s)	Result	RDL	Units	Method	Analysis Date	Analyst	Flag
Saturated Paste							
pН	7.1	0.1	pH Units	S-1.10 W.S.	11/20/15 14:5	5 cdcs	
Minimum Resistivity	8500	10	ohm-cm	Cal Trans 643	3 11/20/15 14:5	5 cdcs	
Water Extract							
Chloride	54	10	ppm	Ion Chromat.	11/19/15 17:1	9 dcb	N-SAG,
Cultate	60	10					N_WEX
Sulfate	60	10	ppm	Ion Chromat.	11/19/15 17:1	9 dcb	N-SAG, N_WEX

mailing P.O. Box 432 Riverside, CA 92502-0432 *location* 6100 Quail Valley Court Riverside, CA 92507-0704 P 951 653 3351 F 951 653 1662 www.babcocklabs.com NELAP no. 02101CA CA Elap no. 2698 EPA no. CA00102

Client Name: Construction Testing & Eng., Inc. Contact: Robert Ellerbusch Address: 14538 Meridian Parkway, Suite A Riverside, CA 92518

Analytical Report: Page 3 of 3 Project Name: Const. Test.-Soils Project Number: [none]

Yes

Work Order Number: B5K1232

Received on Ice (Y/N):

Temp: 22 °C

Report Date: 22-Nov-2015

Notes and Definitions

- N_WEX Analyte determined on a 1:10 water extract from the sample.
- N-SAG Results reported in ppm are expressed on an air dried soil basis.
- ND: Analyte NOT DETECTED at or above the Method Detection Limit (if MDL is reported), otherwise at or above the Reportable Detection Limit (RDL)
- NR: Not Reported
- RDL: **Reportable Detection Limit**
- MDL: Method Detection Limit
- */": NELAP does not offer accreditation for this analyte/method/matrix combination

Approval

Enclosed are the analytical results for the submitted sample(s). Babcock Laboratories certify the data presented as part of this report meet the minimum quality standards in the referenced analytical methods. Any exceptions have been noted. Babcock Laboratories and its officers and employees assume no responsibility and make no warranty, express or implied, for uses or interpretations made by any recipients, intended or unintended, of this report.

Grehmutae Reasy

mailing P.O. Box 432 Riverside, CA 92502-0432

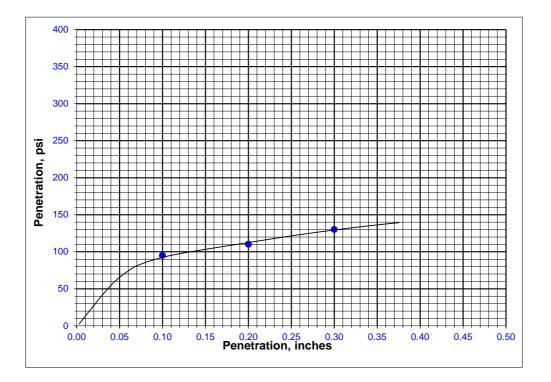
cc:

location 6100 Quail Valley Court Riverside, CA 92507-0704

P 951 653 3351 F 951 653 1662 www.babcocklabs.com e-Short_No Alias

NELAP no. 02101CA CA Elap no. 2698 EPA no. CA00102

APPENDIX C

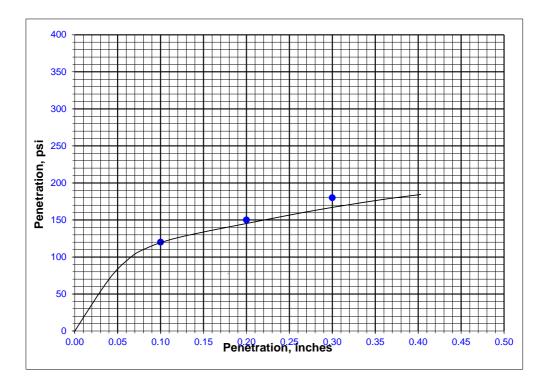

FIELD CBR RESULTS

Field CBR Test (ASTM D4429)

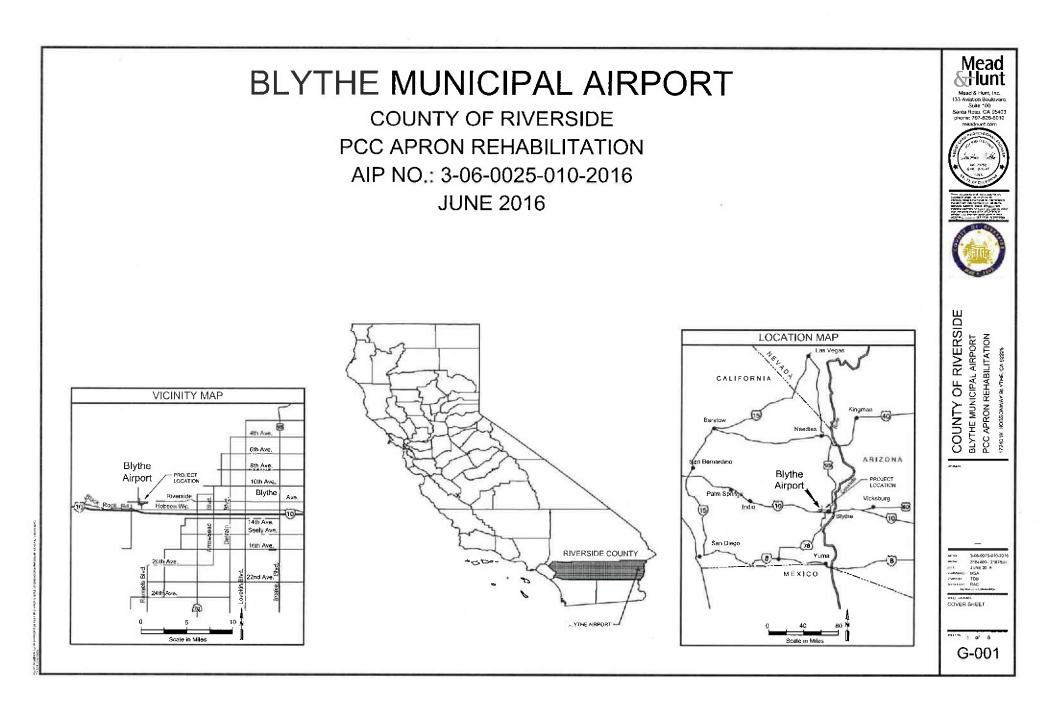
Project Name:	Blythe Municipal Airport	Pavement Rehabilitation
CTE Project No .:	40-3264	
Test Date:	11/10/15	
Test ID:	B-6	
CBR Value:	10	

	1	2	3
inches	0.10	0.2	0.30
psi	95.0	110.0	130.0

14538 Meridian Parkway, Suite A | Riverside, CA 92518 | Ph (951) 571-4081 | Fax (951) 571-4188


Inspection | Testing | Geotechnical | Environmental | Construction Engineering | Civil Engineering | Surveying

Field CBR Test (ASTM D4429)


Project Name:	Blythe Municipal Airport	Pavement Rehabilitation
CTE Project No .:	40-3264	
Test Date:	11/10/15	
Test ID:	B-9	
CBR Value:	12	

	1	2	3
inches	0.10	0.2	0.30
psi	120.0	150.0	180.0

14538 Meridian Parkway, Suite A | Riverside, CA 92518 | Ph (951) 571-4081 | Fax (951) 571-4188

Inspection | Testing | Geotechnical | Environmental | Construction Engineering | Civil Engineering | Surveying

These accurates any other sciences to any property sciences are not any operating of the operation of the science of sciences and sciences of the science of t

Mead & Hunt

Mead & Hunt, Inc. 133 Aviation Boulevard, Suile 100 Sanla Rosa, CA 95403 phone: 707-528-5010 meachant.com

COUNTY OF RIVERSIDE BLYTHE MUNICIPAL AIRPORT PCC APRON REHABILITATION HOB\$0NWAY BLYTHE, CA 92225 17240 W. H

_

альо Каларана Калар

SHEET INDEX,

LEGEND AND

ABBRAVIATIONS attives 2 of B

G-002

57-1640v

SHEET INDEX

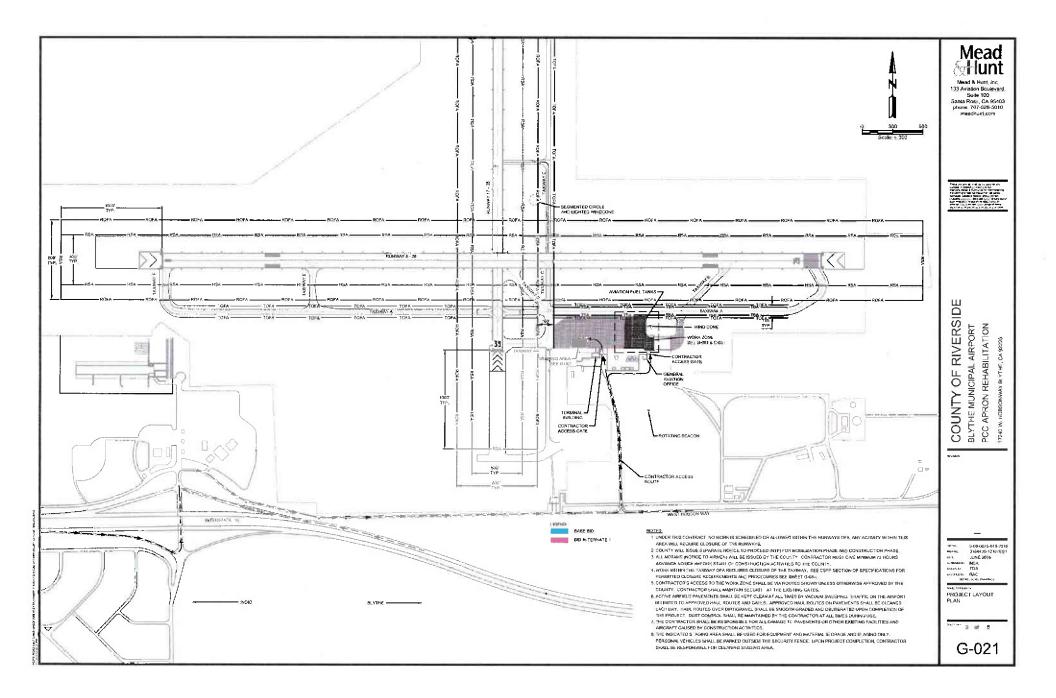
DRAWING NUMBER	SHEET NUMBER	SI EET TITLE
1	G-001	COVER SHEET

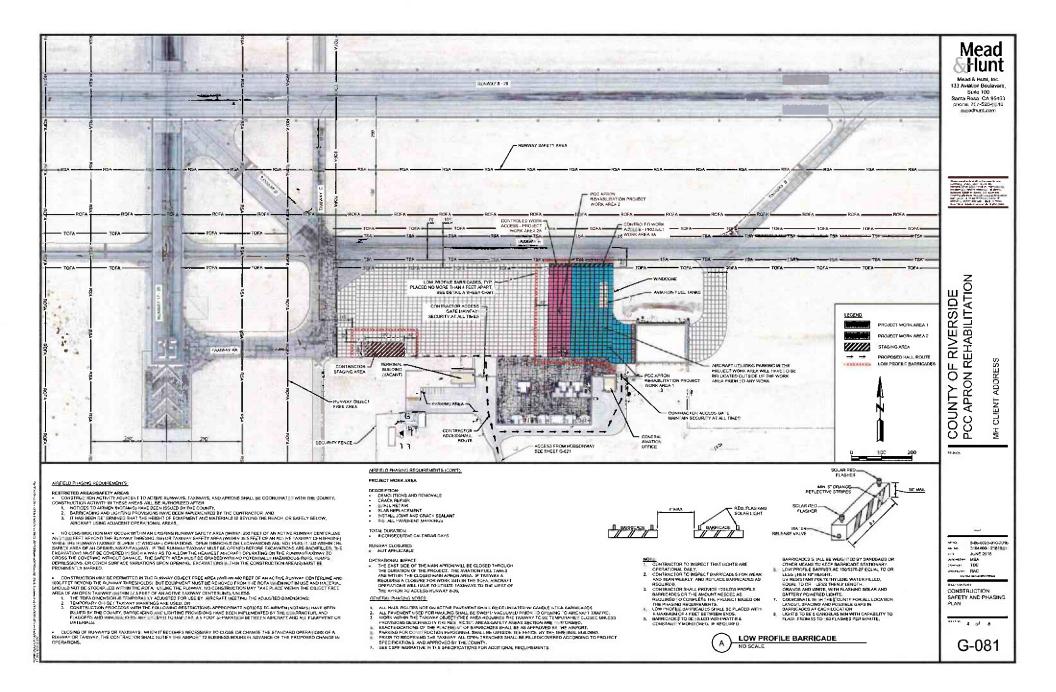
3

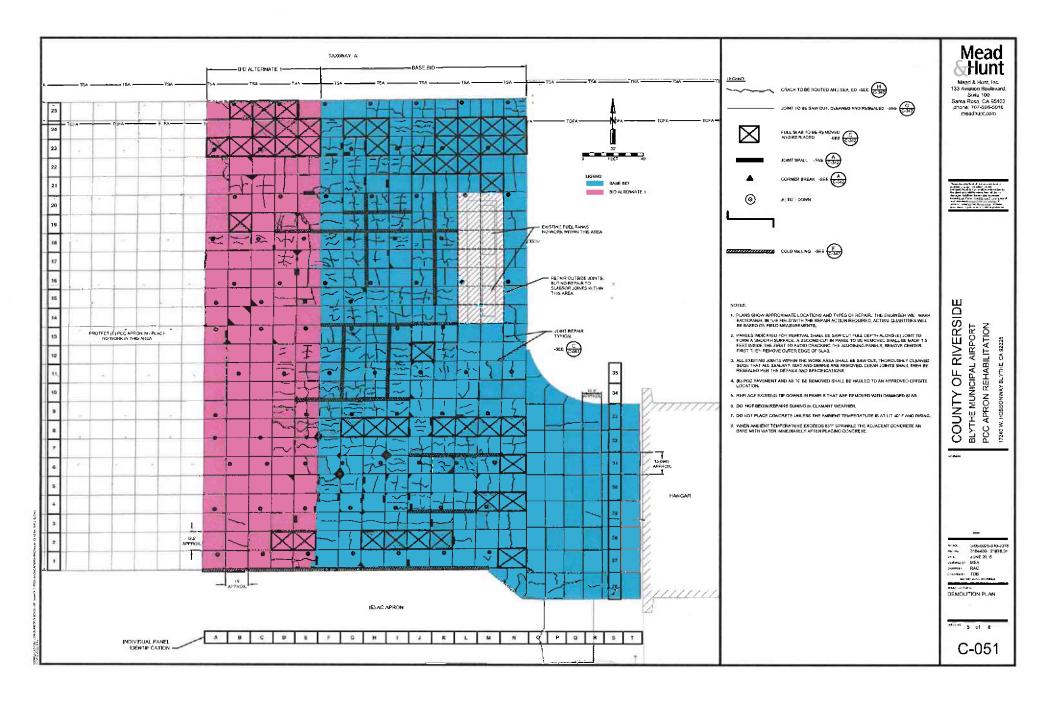
4

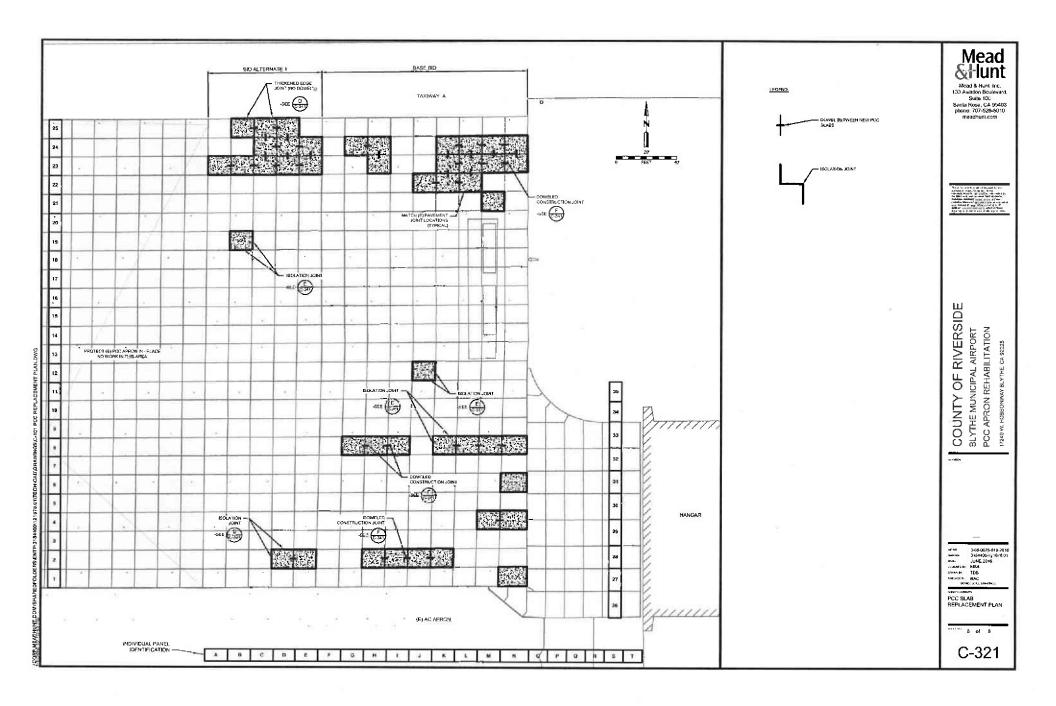
- 2 G-002 SHEET INDEX, LEGEND AND ABBRAVIATIONS
 - G-021 FROJECT LAYOUT PLAN
 - G-081 CONSTRUCTION SAFETY AND PHASING PLAN

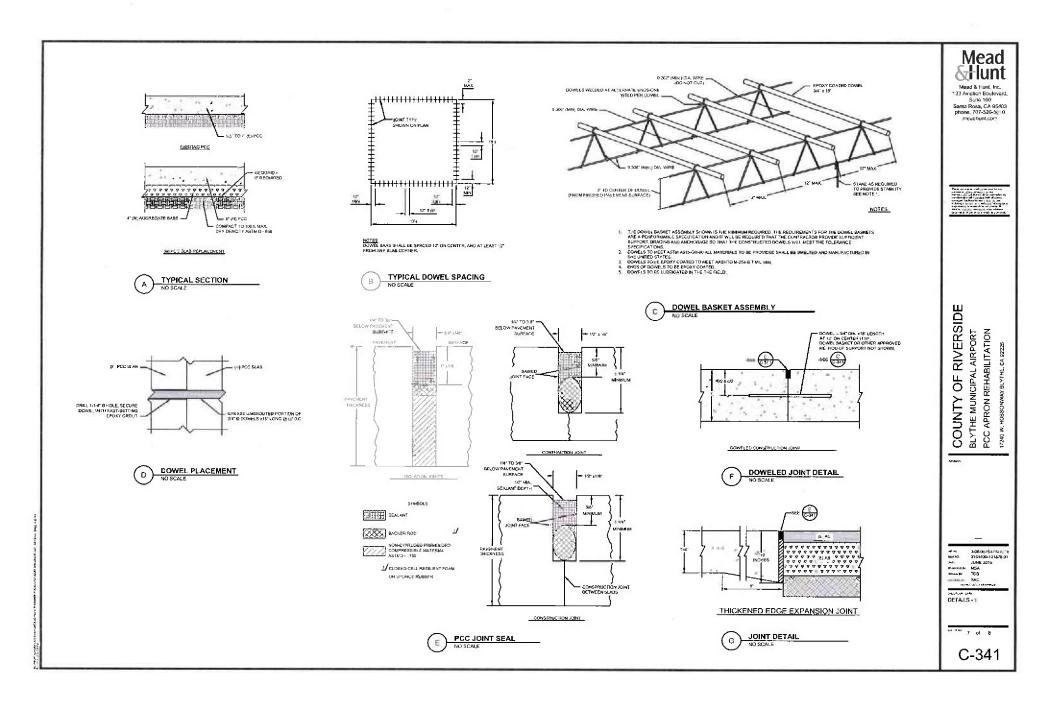
AÐ AC ASB AV#G BC BLDG

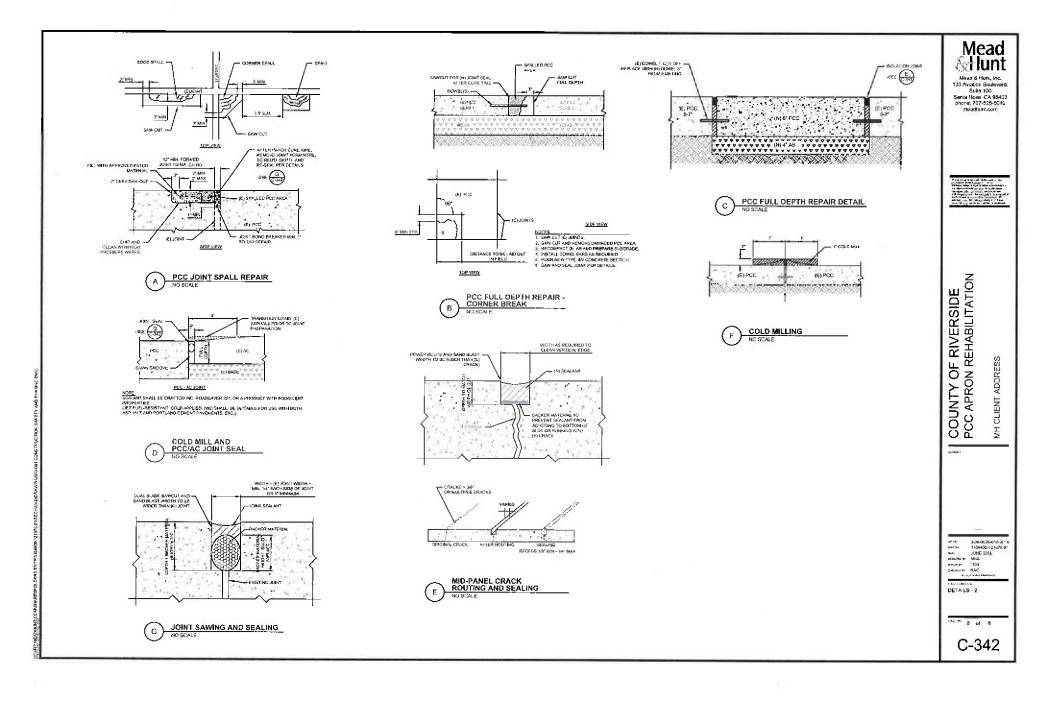

BNT BVC CLF CHP UH UHAUF 21 EC EC EC EC EC EC EC EC FC FC FC FC FC FC


- C-051 DEMOLITION PLAN 5
- 6 C-321 PCC SLAB REPLACEMENT PLAN
- 7 C-341 DETAILS - 1
- 8 C-3-2 DETAILS - 2


		DRAWING	EGEND		
	EXISTING	PROPOSED		EXISTING	PROPOSED
PCC PAVEMENT	N/8	COMPAREMENTS	PAPI	C)	N/A
SEAL COAT	N/A	NVA	WATER		NA
ELCVATION	×100.00	×100.00	WATER VALVE	Dod-	NA
BORING	Nº4	NA	IRRIGATION LINE		N/A
LENCHMARK		N/A	PIRE HYDRANT	. Q.	NZA
COPOGRAPHIC COLLOUR		-000	SANTARY SEWER	+\$5	NA
APPROXIMATE DAYLIGHT	N/A	N/A,	STORM DRAIN		N/A
PROPERTY		N/A	CATCH BASIN	招	N-A
FENCE		11/A	MANHOLE	U.	NEA
GATE		N/A	/LOW LINE	·	N/A
BUILDING	Printer and a second	NA	STRAWWALLE	Ψ <u>ν</u>	NKA
ELEGTRIC		TU/A	TELEPHONE		NA
PULL BOX	X	N/A	RUNWAY SAFETY AREA	N/A	
SKIN	1	N/A	AIRPORT BEACON	10 A	NA
ELECTRICAL POWER POLE	LO ^S	N/A	RUNWAY OBJECT FREE AREA	NA	
THRESHOLD LIGHT	10	N/A	TAXIWAY OBJECT FREE AREA	N/A	TOPA
WINDCONE	05	NUA	LOW PROFILE BARRICADES	N/A	
ELECTRICAL DUCT WARKER		NUA	COMPACTED SOIL	ASA.	
STAGING AREA	Nº A	VIIIIIIIIII	110 100		
AGCRECA E BASE	NA	0 * 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
SEALANT.	N/A	International Action of the			


ABBREVIATIONS AGGREGATE BASE ASP. IALT CONCRETE AGGREGATE SUB-BASE AMERICAN WIRE GAUGE BEGINNING OF CURVE BUILDING GALVANIZEO GRADE GREAK GROUND FAULT CIRCUIT (NTERRUPTER GROUND SHOT GAEV GB GPCI GS HDPE HP IE LF MAX MID MRL MITL RN OC PB PCC R_BQ REQUIRED RWA RWY SD SUMH SG SH SS SS SSMH STA STD T BULDING BARCHAWN BEGIN VERTICAL CLIWE CONTELLINE CONTELLINE CONTELLINE CONTELLINE CONTELLINE CONTELLINE DIRECT RAREA DIANI THE ELISING ELISIN ELISING S HOULDER SHOULDER SANITARY SEWER SANITARY SEWER MANHOLE STATION STATION STATION STATION TELEPHONE UNE TELEPHONE UNE TOP OF CURB TOP OF CURB TOP OF GRATE TAXEANE TOE OF BANK TOP OF BANK TC TG TOP TOP TYP UON USA VENT VG W/ WO W/ W/ W/ W// TOP OF BARS TAXINAY INVESSIONERWISE NOTED UNDERSTONE ALENT VENTRA WATER UNDE WHENDOT WATER UNDE WATER UNDE WELDED WIRE NEED EDGE OF PAVEMENT EDGE DF FAVENENT ENG VERTOL CURVE FEOL SAL AVIATION ADMINISTRATION FRED BASE OPERATOF FINISH RADIO FINISH RADIO FINISH RADIO FINISH RADIO FUNISH (FEOL CAS LINE EI PVC PVI R NAR RC RCP


- ADUINED RUNWAY WORK RESTRICTED AREA RUNWAY RUORM ORAN SI ORA DRAIN SI ORA DRAIN SI RAIGHT GRADE



OFFICE OF CLERK OF THE BOARD OF SUPERVISORS 1st FLOOR, COUNTY ADMINISTRATIVE CENTER P.O. BOX 1147, 4080 LEMON STREET RIVERSIDE, CA 92502-1147 PHONE: (951) 955-1060 FAX: (951) 955-1071

KECIA HARPER-IHEM Clerk of the Board of Supervisors

KIMBERLY A. RECTOR Assistant Clerk of the Board

July 25, 2016

THE DESERT SUN ATTN: LEGALS PO BOX 2734 PALM SPRINGS, CA 92263

TEL: (760) 778-4502 E-MAIL: legals@thedesertsun.com

RE: NOTICE INVITING BIDS: BLYTHE MUNICIPAL AIRPORT – PORTLAND CEMENT CONCRETE APRON PAVEMENT REHABILITATION PROJECT

To Whom It May Concern:

Attached is a copy for publication in your newspaper for **TWO (2) TIMES**:

WEDNESDAY – JULY 27, 2016 WEDNESDAY – AUGUST 3, 2016

We require your affidavit of publication immediately upon completion of the last publication.

Your invoice must be submitted to this office, WITH TWO CLIPPINGS OF THE PUBLICATION.

NOTE: PLEASE COMPOSE THIS PUBLICATION INTO A SINGLE COLUMN FORMAT.

Thank you in advance for your assistance and expertise.

Sincerely,

Cecilia Gil

Board Assistant to: KECIA HARPER-IHEM, CLERK OF THE BOARD

Gil, Cecilia

From:	Email, TDS-Legals <legals@thedesertsun.com></legals@thedesertsun.com>
Sent:	Monday, July 25, 2016 9:10 AM
То:	Gil, Cecilia
Subject:	RE: FOR PUBLICATION: Blythe Municipal Airport

Good Morning Cecilia 🙂

Ad received and will publish on date(s) requested.

Charlene Moeller | Customer Care Representative / for Lynne Stephenson

The Desert Sun Media Group 750 N. Gene Autry Trail, Palm Springs, CA 92262 t 760.778.4578 | f 760.778.4528 e: <u>legals@thedesertsun.com</u>

The Coachella Valley's #1 Source in News & Advertising! <u>www.DesertSun.com</u> | twitter @MyDesert | facebook thedesertsun

This email and any files transmitted with it are confidential and intended for the individual to whom they are addressed. If you have received this email in error, please notify the sender and delete the message from your system

From: Gil, Cecilia [mailto:CCGIL@rcbos.org] Sent: Monday, July 25, 2016 8:27 AM To: Email, TDS-Legals <legals@thedesertsun.com> Subject: FOR PUBLICATION: Blythe Municipal Airport

Good morning! Attached is a Notice Inviting Bids, for publication on 2 Wednesdays: July 27 and Aug. 3, 2016. Please confirm. THANK YOU!

1

Cecilia Gil

Board Assistant Clerk of the Board of Supervisors (951) 955-8464 MS# 1010

ADVERTISEMENT FOR BIDS

Blythe Municipal Airport PCC Apron Rehabilitation

PUBLIC NOTICE: Sealed proposals for the PCC Apron Rehabilitation Project at Blythe Municipal Airport will be received at the offices of the Clerk of the Board of Supervisors for the County of Riverside, 4080 Lemon Street, First Floor, Riverside, California 92501 until 10:00 a.m. August 9, 2016, and then will be publicly opened and read.

DESCRIPTION OF WORK:

1. This project consists of the following work:

Base Bid – PCC Apron – Rehabilitation of Eastern Area

- Removal of existing PCC slabs, requiring replacement and associated tie-down anchors.
- PCC slab replacement.
- Spall repair of the PCC slabs in the associated Project area.
- Crack repair in various PCC slabs in the Project area.
- Profile grinding of PCC slab edges (cold milling).
- Sawcutting and cleaning of all joints in the Project area, then sealing with new joint sealant.

Bid Alternate 1 – PCC Apron – Additional Rehabilitation of Area Adjacent to Eastern Area

- Removal of existing PCC slabs requiring replacement and associated tie-down anchors.
- PCC Slab replacement.
- Spall repair of the PCC slabs in the associated Project area.
- Crack repair in various PCC slabs in the Project area.
- Profile grinding of PCC slab edges.
- Sawcutting and cleaning of all joints in the Project area, then sealing with new joint sealant.

2. The Engineer's Cost Estimate is:

- Base Bid: \$467,429.00
- Bid Alternate: \$197,400.00
- TOTAL: \$664,829.00

BID DOCUMENTS: Complete digital Project Bidding Documents (Plans, Specifications, and Bid Documents) are available online from Quest Construction Data Network (Quest CDN) at <u>www.questcdn.com</u>. Interested parties may download the digital documents for twenty dollars (\$20.00) by inputting **Quest Project #4578475** on the Project Search page. Those downloading the bidding documents electronically do so at their own risk for completeness of documents.

Please contact Quest CDN at (952)233-1632 or <u>info@questcdn.com</u> for assistance in free membership registration, downloading, and working with this digital project information.

Note: Make sure to provide your correct email address when setting up account with Quest, as all information (i.e. addenda, correspondence, etc.) will be issued by Quest to email address provided. Also make sure QuestCDN.com is not blocked in your system; important information may end up in "junk" folder.

BIDDER / CONTRACTOR REQUIREMENTS:

- 1. Contractor's License: Each Bidder must have a Class "A" California Contractor's License as required under provisions of the California Business and Professions Code or the appropriate combination of Class "C" Specialty Contractor licenses to match the proposed work at time of bid.
- Registered. Per Public Works Contractor Registration Law [SB 854], Contractors and Subcontractors who intend to bid or perform work on this Project must be registered with the Department of Industrial Relations. (Information is available at <u>http://www.dir.ca.gov/Public-Works/Contractors.html</u>.
 - No contractor or subcontractor may be listed on a bid proposal for a public works project (submitted on or after March 1, 2015) unless registered with the Department of Industrial Relations pursuant to Labor Code section 1725.5 [with limited exceptions from this requirement for bid purposes only under Labor Code section 1771.1(a)].
 - No contractor or subcontractor may be awarded a contract for public work on a public works project (awarded on or after April 1, 2015) unless registered with the Department of Industrial Relations pursuant to Labor Code section 1725.5.
 - This project is subject to compliance monitoring and enforcement by the Department of Industrial Relations.
- **3. Federal Aviation Administration.** This project is funded under the Federal Aviation Administration (FAA) Airport Improvement Program (AIP). Contractor(s) will be required to comply with specific federal contract provisions as listed herein and contained in the Bid Documents. The following provisions are incorporated herein by reference with the same force and effect as if given in full text:
 - Buy American Preference (Reference: 49 USC § 50101)
 - Foreign Trade Restriction (Reference: 49 CFR part 30)
 - Davis Bacon Act (Reference: 29 CFR Part 5)
 - Affirmative Action (Reference: 41 CFR part 60-4)
 - Government Wide Debar and Suspension
 - Government-wide Requirements for Drug-free Workplace

Additional provisions that will apply to this project / contract are:

- Equal Employment Opportunity (41 CFR Part 60)
- Goals for Minority and Female Participation (41 CFR Part 60-4.2)
- Certification of Nonsegregated Facilities (41 CFR Part 60-1.8)
- Debarment and Suspension (49 CFR Part 29)
- Veteran's Preference (49 USC Section 47112(c))
- Distracted Driving (Texting when Driving) (Executive Order 13513/ DOT Order 3902.10) Successful Bidder/Contractor will be required to insert applicable federal contract provisions in all subcontracts, and shall be responsible for compliance by subcontractor.
- 4. Prevailing Wages and Payroll Records. Contractor will be required to pay employees and keep records in accordance with the Davis Bacon Act (29 CFR Part 5) and/or the Federal Fair Labor Standards Act (29 CFR part 201).
- 5. List of Subcontractors The prime contractor must provide a list of subcontractors with his bid on the form provided in the Proposal forms.

6. Disadvantaged Business Enterprise (DBE): A Race/Gender Neutral DBE Goal of 12.5% has been established for this contract.

A condition of award of the contract is Bidder/Offeror satisfying the good faith effort requirements of 49 CFR Part 26.53. As a condition of bid responsiveness, the Bidder or Offeror must submit the information as stated in the Project Specifications (Federal Provisions section) with their proposal on the forms provided.

BID SUBMISSION. Each bid shall be in accordance with the Plans and Specifications and other Contract Documents now on file with County of Riverside at the address below, for review only.

Each bidder must complete, sign, and furnish with his bid all forms and certifications contained in the Proposal Forms section of the Bid Documents. All proposals sent by mail must be posted so as to be in the hands of the County of Riverside by the hour and date set forth above for the bid opening. All proposals shall be addressed to:

Clerk of the Board of Supervisors for the County of Riverside, 4080 Lemon Street, First Floor, Riverside, California 92501

and marked: Blythe Municipal Airport PCC Apron Rehabilitation AIP No. 3-06-0025-010-2016

Each bid/proposal must be accompanied by a certified check, cashier's check, or bid bond in an amount not less than ten percent (10%) of the amount bid. The successful bidder shall be required to submit at the time of execution of the Contract a Performance Bond and a Payment Bond (Labor and Material), each for 100% of the Contract price.

The County shall have the right to reject any bids presented in accordance with Section 20150.9 of the California Public Contracts Code.

Pre-Bid Meeting: A Pre-Bid Meeting has been scheduled for August 1, 2016, at 11:00 a.m. The meeting will be held at the Airport. All Bidders are encouraged to attend this meeting.

CIVIL RIGHTS - GENERAL. The County of Riverside, in accordance with the provisions of Title VI of the Civil Rights Act of 1964 (78 Stat. 252, 42 U.S.C. §§ 2000d to 2000d-4) and the Regulations, hereby notifies all bidders that it will affirmatively ensure that any contract entered into pursuant to this advertisement, disadvantaged business enterprises will be afforded full and fair opportunity to submit bids in response to this invitation and will not be discriminated against on the grounds of race, color, or national origin in consideration for an award.

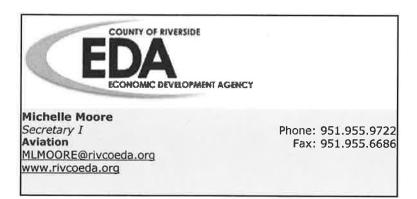
Alternative formats available upon request to individuals with disabilities.

Dated: July 25, 2016

Kecia Harper-Ihem, Clerk of the Board By: Cecilia Gil, Board Assistant

Gil, Cecilia

From: Sent:	Moore, Michelle <mlmoore@rivcoeda.org> Wednesday, July 6, 2016 11:21 AM</mlmoore@rivcoeda.org>
То:	Gil, Cecilia
Cc:	Shippy, Daryl
Subject:	RE: Bid Opening Dates for two projects
Attachments:	Bid Ad Blythe_Revised_FINAL 07-06-16.pdf; Bid Ad FVA_Revised_FINAL_070616.pdf


Hi Cecilia,

Mead & Hunt were able to submit the NIB today since I will be out of the office.

Attached are the NIB's for Blythe PCC Apron Rehabilitation, and the French Valley Airport South Apron Pavement Reconstruction projects.

Yes, please advertise both projects in the Desert Sun on July 27th, and August 3rd.

Thank you, Michelle

From: Gil, Cecilia Sent: Wednesday, July 06, 2016 11:08 AM To: Moore, Michelle Subject: RE: Bid Opening Dates for two projects

Good morning Michelle,

Ok.. and still publish in Desert Sun for July 27 and Aug. 3 correct?

Cecilia Gil Board Assistant Clerk of the Board of Supervisors (951) 955-8464 MS# 1010

From: Moore, Michelle [mailto:MLMOORE@rivcoeda.org] Sent: Wednesday, July 6, 2016 10:16 AM