- 1. Inlet and outlet of each hydronic boiler. - 2. Inlet and outlet of each hydronic coil in air-handling units. - 3. Two inlets and two outlets of each hydronic heat exchanger. - 4. Inlet and outlet of each chiller. - P. Install pressure gages in the following locations: - Discharge of each pressure-reducing valve. - 2. Suction and discharge of each pump. - 3. Inlet and outlet of each chiller. # 3.2 CONNECTIONS - A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment. - B. Connect flowmeter transmitters to meters (if not integral). ### 3.3 ADJUSTING - A. After installation, calibrate meters according to manufacturer's written instructions. - B. Adjust faces of meters and gages to proper angle for best visibility. ## 3.4 THERMOMETER SCHEDULE - A. Thermometers at inlet and outlet of each hydronic zone shall be the following: - Test plug with EPDM self-sealing rubber inserts. - B. Thermometers at inlet and outlet of each hydronic boiler, chiller, and hydronic heat exchangers shall be the following: - 1. Industrial-style, liquid-in-glass type. - C. Thermometers at inlet and outlet of each hydronic coil in air-handling units and built-up central systems shall be the following: - 1. Industrial-style, liquid-in-glass type. - D. Thermometer stems shall be of length to match thermowell insertion length. ## 3.5 THERMOMETER SCALE-RANGE SCHEDULE - A. Scale Range for Heating, Hot-Water Piping: 30 to 240 deg F. - B. Scale Range for Chilled Water Piping: 0 to 100 deg F. # 3.6 PRESSURE-GAGE SCHEDULE A. Pressure gages at discharge of each pressure-reducing valve shall be the following: - Solid-front, pressure-relief, direct-mounted, metal case.. - B. Pressure gages at suction and discharge of each pump and inlet/outlet of chiller shall be the following: - 1. Solid-front, pressure-relief, direct-mounted, metal case. - 3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE - A. Scale Range for Chilled-Water Piping: 0 to 30 psi. - 3.8 FLOWMETER SCHEDULE - A. Flowmeters for Chilled Water Piping: Electromagnetic type. **END OF SECTION** THIS PAGE INTENTIONALLY BLANK ## **SECTION 23 0523** ### GENERAL-DUTY VALVES FOR HVAC PIPING ### PART 1 - GENERAL # 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY # A. Section Includes: - 1. Bronze ball valves. - 2. Iron, single-flange butterfly valves. - 3. Iron, grooved-end butterfly valves. - 4. Bronze swing check valves. - 5. Iron, center-guided check valves. - 6. Bronze globe valves. - 7. Iron globe valves. ### B. Related Sections: 1. Division 23 "Identification for HVAC Piping and Equipment" for valve tags and schedules. ## 1.3 DEFINITIONS - A. CWP: Cold working pressure. - B. EPDM: Ethylene propylene copolymer rubber. - C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber. - D. NRS: Nonrising stem. - E. OS&Y: Outside screw and yoke. - F. RS: Rising stem. - G. SWP: Steam working pressure. ### 1.4 ACTION SUBMITTALS A. Product Data: For each type of valve indicated. #### 1.5 QUALITY ASSURANCE - Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer. - B. ASME Compliance: - 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria. - 2. ASME B31.1 for power piping valves. - 3. ASME B31.9 for building services piping valves. # 1.6 DELIVERY, STORAGE, AND HANDLING - A. Prepare valves for shipping as follows: - 1. Protect internal parts against rust and corrosion. - 2. Protect threads, flange faces, grooves, and weld ends. - 3. Set globe valves closed to prevent rattling. - 4. Set ball valves open to minimize exposure of functional surfaces. - 5. Set butterfly valves closed or slightly open. - 6. Block check valves in either closed or open position. - B. Use the following precautions during storage: - 1. Maintain valve end protection. - 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures. - C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points. #### PART 2 - PRODUCTS ## 2.1 GENERAL REQUIREMENTS FOR VALVES - A. Refer to HVAC valve schedule articles for applications of valves. - B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures. - C. Valve Sizes: Same as upstream piping unless otherwise indicated. - D. Valve Actuator Types: - 1. Gear Actuator: For quarter-turn valves NPS 8 and larger. - 2. Handwheel: For valves other than guarter-turn types. - 3. Handlever: For quarter-turn valves NPS 6 and smaller. - Chainwheel: Device for attachment to valve handwheel, stem, or other actuator; of size and with chain for mounting height, as indicated in the "Valve Installation" Article. - E. Valves in Insulated Piping: With extensions (of sufficient length to allow free operation of valve handle without damaging insulation minimum 2 inches) and the following features: - Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation. - 2. Butterfly Valves: With extended neck. - F. Valve-End Connections: - 1. Flanged: With flanges according to ASME B16.1 for iron valves. - Grooved: With grooves according to AWWA C606. - 3. Solder Joint: With sockets according to ASME B16.18. - 4. Threaded: With threads according to ASME B1.20.1. - G. Valve Bypass and Drain Connections: MSS SP-45. ## 2.2 BRONZE BALL VALVES - A. Three-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim: - Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. Conbraco Industries, Inc.; Apollo Valves. - b. Hammond Valve. - c. Milwaukee Valve Company. - d. NIBCO INC. - 2. Description: - a. Standard: MSS SP-110. - b. SWP Rating: 150 psig. - c. CWP Rating: 600 psig. - d. Body Design: Three piece. - e. Body Material: Bronze. - f. Ends: Threaded. - g. Seats: PTFE or TFE. - h. Stem: Stainless steel. - i. Ball: Stainless steel, vented. - j. Port: Full. # 2.3 IRON, SINGLE-FLANGE BUTTERFLY VALVES A. 150 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Aluminum-Bronze Disc: - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. Conbraco Industries, Inc.; Apollo Valves. - b. Hammond Valve. - c. Milwaukee Valve Company. - d. NIBCO INC. - e. Watts Regulator Co.; a division of Watts Water Technologies, Inc. ## 2. Description: - a. Standard: MSS SP-67, Type I. - b. CWP Rating: 150 psig. - Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange. - d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron. - e. Seat: EPDM. - f. Stem: One- or two-piece stainless steel. - g. Disc: Aluminum bronze. ## 2.4 IRON, GROOVED-END BUTTERFLY VALVES - A. 300 CWP, Iron, Grooved-End Butterfly Valves: - Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. Anvil International, Inc. - b. Mueller Steam Specialty; a division of SPX Corporation. - c. NIBCO INC. - d. Tyco Fire Products LP; Grinnell Mechanical Products. - e. Victaulic Company. ## 2. Description: - a. Standard: MSS SP-67, Type I. - b. NPS 8 and Smaller CWP Rating: 300 psig. - c. NPS 10 and Larger CWP Rating: 200 psig. - d. Body Material: Coated, ductile iron. - e. Stem: Two-piece stainless steel. - f. Disc: Coated, ductile iron. - g. Seal: EPDM. ## 2.5 BRONZE SWING CHECK VALVES - A. Class 125, Bronze Swing Check Valves with Bronze Disc: - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. Hammond Valve. - b. Milwaukee Valve Company. - c. NIBCO INC. - d. Watts Regulator Co.; a division of Watts Water Technologies, Inc. # 2. Description: - a. Standard: MSS SP-80, Type 3. - b. CWP Rating: 200 psig. - c. Body Design: Horizontal flow. - d. Body Material: ASTM B 62, bronze. - e. Ends: Threaded. - f. Disc: Bronze. ## 2.6 IRON, CENTER-GUIDED CHECK VALVES - A. Class 125, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat: - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. Crispin Valve. - b. DFT Inc. - c. Flo Fab Inc. - d. GA Industries. Inc. - e. Hammond Valve. - f. Metraflex, Inc. - g. Milwaukee Valve Company. - h. Mueller Steam Specialty; a division of SPX Corporation. - i. NIBCO INC. - j. Val-Matic Valve & Manufacturing Corp. - k. Watts Regulator Co.; a division of Watts Water Technologies, Inc. # 2. Description: - Standard: MSS SP-125. - b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig. - c. NPS 14 to NPS 24, CWP Rating: 150 psig. - d. Body Material: ASTM A 126, gray iron. - e. Style: Compact wafer. - f. Seat: Bronze. ## 2.7 BRONZE GLOBE VALVES - A. Class 125, Bronze Globe Valves with Bronze Disc: - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. Hammond Valve. - b. Milwaukee Valve Company. - c. NIBCO INC. d. Watts Regulator Co.; a division of Watts Water Technologies, Inc. ## 2. Description: - a. Standard: MSS SP-80, Type 1. - b. CWP Rating: 200 psig. - c. Body Material: ASTM B 62, bronze with integral seat and screw-in bonnet. - d. Ends: Threaded or solder joint. - e. Stem and Disc: Bronze. - f. Packing: Asbestos free. - g. Handwheel: Malleable iron, bronze, or aluminum. # 2.8 IRON GLOBE VALVES - A. Class 125, Iron Globe Valves: - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - Hammond Valve. - b. Milwaukee Valve Company. - c. NIBCO INC. - d. Watts Regulator Co.; a division
of Watts Water Technologies, Inc. ### 2. Description: - a. Standard: MSS SP-85, Type I. - b. CWP Rating: 200 psig. - c. Body Material: ASTM A 126, gray iron with bolted bonnet. - d. Ends: Flanged. - e. Trim: Bronze. - f. Packing and Gasket: Asbestos free. ## PART 3 - EXECUTION # 3.1 EXAMINATION - A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling. - B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations. - C. Examine threads on valve and mating pipe for form and cleanliness. - D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage. E. Do not attempt to repair defective valves; replace with new valves. ### 3.2 VALVE INSTALLATION - A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown. - B. Locate valves for easy access and provide separate support where necessary. - C. Install valves in horizontal piping with stem at or above center of pipe. - D. Install valves in position to allow full stem movement. - E. Install check valves for proper direction of flow and as follows: - 1. Swing Check Valves: In horizontal position with hinge pin level. - 2. Center-Guided Check Valves. In horizontal or vertical position, between flanges. #### 3.3 ADJUSTING A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs. ## 3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS - A. If valve applications are not indicated, use the following: - 1. Shutoff Service: Ball or butterfly valves. - 2. Butterfly Valve Dead-End Service: Single-flange (lug) type. - 3. Throttling Service except Steam: Globe, ball, or butterfly valves. - 4. Pump-Discharge Check Valves: - a. NPS 2 and Smaller: Bronze swing check valves with bronze disc. - b. NPS 2-1/2 and Larger: Center-guided, metal-seat check valves. - B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted. - C. Select valves, except wafer types, with the following end connections: - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below. - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below. - 3. For Copper Tubing, NPS 5 and Larger: Flanged ends. - 4. For Steel Piping, NPS 2 and Smaller: Threaded ends. - 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below. - 6. For Steel Piping, NPS 5 and Larger: Flanged ends. - 7. For Grooved-End Steel Piping except Steam and Steam Condensate Piping: Valve ends may be grooved. # 3.5 CHILLED-WATER VALVE SCHEDULE - A. Pipe NPS 2 and Smaller: - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends. - 2. Ball Valves: Three piece, full port, bronze with stainless-steel trim. - 3. Bronze Swing Check Valves: Class 150, bronze disc. - 4. Bronze Globe Valves: Class 150, bronze disc. - B. Pipe NPS 2-1/2 and Larger: - 1. Iron, Single-Flange Butterfly Valves, NPS 2-1/2 to NPS 12: 200 CWP, EPDM seat, aluminum-bronze disc. - 2. Iron, Grooved-End Butterfly Valves, NPS 2-1/2 to NPS 12: 175 CWP. Allowed for outdoor piping only. - 3. Iron, Center-Guided Check Valves: Class 125, compact-wafer, metal seat. - Iron Globe Valves: Class 125. ## 3.6 HEATING-WATER VALVE SCHEDULE - A. Pipe NPS 2 and Smaller: - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends. - 2. Ball Valves: Three piece, full port, bronze with stainless-steel trim. - 3. Bronze Swing Check Valves: Class 150, bronze disc. - 4. Bronze Globe Valves: Class 150, bronze disc. - B. Pipe NPS 2-1/2 and Larger: - 1. Iron, Single-Flange Butterfly Valves, NPS 2-1/2 to NPS 12: 200 CWP, EPDM seat, aluminum-bronze disc. - 2. Iron, Grooved-End Butterfly Valves, NPS 2-1/2 to NPS 12: 175 CWP. Allowed for outdoor piping only. - 3. Iron, Center-Guided Check Valves: Class 125, compact-wafer, metal seat. - 4. Iron Globe Valves, NPS 2-1/2 to NPS 12: Class 125. ### **END OF SECTION** #### **SECTION 23 0529** ### HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT #### PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY #### A. Section Includes: - 1. Metal pipe hangers and supports. - 2. Trapeze pipe hangers. - 3. Metal framing systems. - 4. Thermal-hanger shield inserts. - 5. Fastener systems. - 6. Equipment supports. #### B. Related Sections: - 1. Division 05 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports. - 2. Division 23 "Vibration Controls For HVAC" for vibration isolation devices. - 3. Division 23 "Expansion Fittings and Loops for HVAC Piping" for pipe guides and anchors. - 4. Division 23 "Metal Ducts" for duct hangers and supports. - 5. Division 23 "Seismic Restraint of Suspended Mechanical Utilities." ### 1.3 DEFINITIONS A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc. ### 1.4 PERFORMANCE REQUIREMENTS - A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated. - B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7. - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water. - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components. 3. Design seismic-restraint hangers and supports for piping and equipment. See Division 23 "Seismic Restraint of Suspended Mechanical Utilities". ### 1.5 ACTION SUBMITTALS - A. Product Data: For each type of product indicated. - B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components: - 1. Trapeze pipe hangers. - 2. Metal framing systems. - 3. Pipe stands. - Equipment supports. - C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation. - 1. Detail fabrication and assembly of trapeze hangers. - 2. Design Calculations: Calculate requirements for designing trapeze hangers. ### 1.6 INFORMATIONAL SUBMITTALS A. Welding certificates. ### 1.7 QUALITY ASSURANCE - A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel." - B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code. ### PART 2 - PRODUCTS ### 2.1 METAL PIPE HANGERS AND SUPPORTS - A. Carbon-Steel Pipe Hangers and Supports: - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped. - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner. - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping. - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel. - B. Stainless-Steel Pipe Hangers and Supports: - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. - 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping. - 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel. ## 2.2 TRAPEZE PIPE HANGERS A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts. ### 2.3 METAL FRAMING SYSTEMS - A. MFMA Manufacturer Metal Framing Systems: - Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. Allied Tube & Conduit - b. Cooper B-Line, Inc. - c. Flex-Strut Inc. - d. GS Metals Corp. - e Thomas & Betts Corporation. - f. Unistrut Corporation; Tyco International, Ltd. - g. Wesanco. Inc. - 2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes. - 3. Standard: MFMA-4. - 4. Channels: Continuous slotted steel channel with inturned lips. - 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel. - 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel or stainless steel. - 7. Metallic Coating: Hot-dipped galvanized for outdoor or corrosive environments. - 8. Paint Coating: Epoxy for dry indoor locations. # 2.4 THERMAL-HANGER SHIELD INSERTS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Carpenter & Paterson, Inc. - 2. Clement Support Services. - 3. ERICO International
Corporation. - 4. National Pipe Hanger Corporation. - 5. PHS Industries, Inc. - 6. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc. - 7. Piping Technology & Products, Inc. - 8. Rilco Manufacturing Co., Inc. - 9. Value Engineered Products, Inc. - B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier. - C. Insulation-Insert Material for Hot Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength. - D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe. - E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe. - F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature. ### 2.5 FASTENER SYSTEMS - A. Mechanical-Expansion Anchors: Insert-wedge-type, steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used. - 1. Outdoor or wet areas: stainless steel anchors. - 2. Indoor, dry areas: Zinc-coated steel anchors. ## 2.6 EQUIPMENT SUPPORTS A. Description: Welded, shop- or field-fabricated equipment support made from structural carbonsteel shapes. ### 2.7 MISCELLANEOUS MATERIALS - A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized. - B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications. - 1. Properties: Nonstaining, noncorrosive, and nongaseous. - 2. Design Mix: 5000-psi, 28-day compressive strength. ## PART 3 - EXECUTION ### 3.1 HANGER AND SUPPORT INSTALLATION - A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure. - B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers. - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers. - 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M. - C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems. - D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping. - E. Fastener System Installation: - Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions. - F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories. - G. Equipment Support Installation: Fabricate from welded-structural-steel shapes. - H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units. - I. Install lateral bracing with pipe hangers and supports to prevent swaying. - J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts. - K. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment. - L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping. - M. Insulated Piping: - 1. Attach clamps and spacers to piping. - a. Piping Operating below or above Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert. - b. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping. - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation. - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers. - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees. - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers. - 4. Shield Dimensions for Pipe: Not less than the following: - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick. - b. NPS 4: 12 inches long and 0.06 inch thick. - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick. - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick. - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick. - 5. Pipes NPS 8 and Larger: Reinforced calcium-silicate-insulation inserts of length at least as long as protective shield. - 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation. - 7. Shield and insert lengths may be reduced to a minimum of 6" long (3" in each direction from the centerline of the hanger) at locations where obstructions prevent the shield and insert from being installed to the full length. All other locations shall conform to the specifications. # 3.2 EQUIPMENT SUPPORTS - A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor. - B. Grouting: Place grout under supports for equipment and make bearing surface smooth. - C. Provide lateral bracing, to prevent swaying, for equipment supports. #### 3.3 METAL FABRICATIONS - A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports. - B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations. - C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following: - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals. - 2. Obtain fusion without undercut or overlap. - Remove welding flux immediately. 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours. ### 3.4 ADJUSTING - A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe. - B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches. ### 3.5 PAINTING - A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces. - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils. - B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 "Exterior Painting" - C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780. ### 3.6 HANGER AND SUPPORT SCHEDULE - A. Specific hanger and support requirements are in Sections specifying piping systems and equipment. - B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections. - C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will be installed outdoors or in wet locations. - D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing. - E. Use carbon-steel pipe hangers and supports, metal trapeze pipe hangers, and metal framing systems and attachments for general service applications. - F. Use stainless-steel pipe hangers and strut systems and stainless-steel attachments for MRI (magnetic resonance imaging) rooms. ABSOLUTELY, NO FERROUS METAL PIPE SUPPORTS ALLOWED IN MRI ROOMS. - G. Use thermal-hanger shield inserts for insulated piping and tubing. - H. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types: - Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30. - 2. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation. - 3. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required. - 4. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3. - 5. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30. - 6. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or
contraction. - 7. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate. - 8. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe. - 9. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange. - 10. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur. - 11. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur. - 12. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary. - 13. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary. - 14. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction. - I. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types: - Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24. - Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps. - J. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types: - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads. - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations. - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings. - Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments. - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations. - K. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types: - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling. - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape. - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles. - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams. - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large. - 6. C-Clamps (MSS Type 23): For structural shapes. - Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge. - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams. - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads. - Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel Ibeams for heavy loads, with link extensions. - 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel. - 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads: - a. Light (MSS Type 31): 750 lb. - b. Medium (MSS Type 32): 1500 lb. - c. Heavy (MSS Type 33): 3000 lb. - 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams. - Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required. - 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited. - L. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types: - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation. - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation. - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe. - M. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types: - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement. - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches. - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs. - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems. - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger. - 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support. - 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support. - 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types: - a. Horizontal (MSS Type 54): Mounted horizontally. - b. Vertical (MSS Type 55): Mounted vertically. - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member. - N. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections. - O. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections. - P. Use mechanical-expansion anchors instead of building attachments where required in concrete construction. **END OF SECTION** ### **SECTION 23 0548** ### VIBRATION CONTROLS FOR HVAC #### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY ### A. Section Includes: - 1. Restrained-spring isolators. - 2. Pipe-riser resilient supports. - 3. Resilient pipe guides. - 4. Spring hangers. - Vibration isolation equipment bases. ## B. Related Requirements: - 1. Section 21 0548 "Vibration Controls for Fire Suppression" for devices for fire-suppression equipment and systems. - 2. Section 22 0548 "Vibration Controls for Plumbing" for devices for plumbing equipment and systems. ### 1.3 ACTION SUBMITTALS - A. Product Data: For each type of product. - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device. - 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device type required. ### B. Shop Drawings: - 1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting. - 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting. - C. Delegated-Design Submittal: For each vibration isolation device. - Include design calculations for selecting vibration isolators and for designing vibration isolation bases. ### 1.4 INFORMATIONAL SUBMITTALS - A. Coordination Drawings: Show coordination of vibration isolation device installation for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any. - B. Qualification Data: For testing agency. #### PART 2 - PRODUCTS ### 2.1 RESTRAINED-SPRING ISOLATORS - A. Freestanding, Laterally Stable, Open-Spring Isolators with Vertical-Limit Stop Restraint: . - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. M.W. Sausse. - b. Mason Industries, Inc. - 2. Housing: Steel housing with vertical-limit stops to prevent spring extension due to weight being removed. - a. Base with holes for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig. - b. Top plate with elastomeric pad. - c. Internal leveling bolt that acts as blocking during installation. - 3. Restraint: Limit stop as required for equipment and authorities having jurisdiction. - 4. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load. - 5. Minimum Additional Travel: 50 percent of the required deflection at rated load. - 6. Lateral Stiffness: More than 80 percent of rated vertical stiffness. - 7. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure. ## 2.2 PIPE-RISER RESILIENT SUPPORT A. Description: All-directional, acoustical pipe
anchor consisting of two steel tubes separated by a minimum 1/2-inch- thick neoprene. - 1. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions. - Maximum Load Per Support: 500 psig on isolation material providing equal isolation in all directions. # 2.3 RESILIENT PIPE GUIDES - A. Description: Telescopic arrangement of two steel tubes or post and sleeve arrangement separated by a minimum 1/2-inch- thick neoprene. - 1. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and re-insertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements. ### 2.4 SPRING HANGERS - A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression: - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. M.W. Sausse. - b. Mason Industries, Inc. - 2. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency. - 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load. - 4. Minimum Additional Travel: 50 percent of the required deflection at rated load. - 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness. - 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure. - 7. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame. - 8. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod. - 9. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil. ### 2.5 VIBRATION ISOLATION EQUIPMENT BASES - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. M.W. Sausse. - 2. Mason Industries, Inc. - B. Steel Rails: Factory-fabricated, welded, structural-steel rails. - Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the roof pad. Include equipment anchor bolts and auxiliary motor slide rails. - a. Include supports for suction and discharge elbows for pumps. - 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Rails shall have shape to accommodate supported equipment. - 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support. - C. Steel Bases: Factory-fabricated, welded, structural-steel bases and rails. - Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the roof pad. Include equipment anchor bolts and auxiliary motor slide bases or rails. - a. Include supports for suction and discharge elbows for pumps. - 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment. - 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support. ### PART 3 - EXECUTION ## 3.1 EXAMINATION - A. Examine areas and equipment to receive vibration isolation control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work. - B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation. - C. Proceed with installation only after unsatisfactory conditions have been corrected. ## 3.2 VIBRATION CONTROL DEVICE INSTALLATION - A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 03300 "Cast-in-Place Concrete." - B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment. # 3.3 VIBRATION ISOLATION EQUIPMENT BASES INSTALLATION A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 03300 "Cast-in-Place Concrete." **END OF SECTION** ### **SECTION 23 0549** ### SEISMIC RESTRAINT OF SUSPENDED MECHANICAL UTILITIES #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. Provide engineered seismic restraint systems for suspended Mechanical Piping, HVAC Duct, and Mechanical Equipment utilities compliant with the currently adopted version of the California Building Code (CBC) with OSHPD amendments. - B. At seismic restraint installation locations, provide vertical support systems engineered to accommodate dead load plus seismic force reactions. ## 1.2 RELATED SPECIFICATION SECTIONS | 23 2113 | Hydronic Piping | | |---------|-----------------------------|--| | 23 3113 | Metal Ducts | | | 23 2213 | Steam and Condensate Piping | | ### 1.3 REFERENCES - A. Publications, codes and standards listed below form a part of this specification to the extent referenced. - OHSPD Pre-Approved <u>Applications, Design and Inspection Manual -Engineered Seismic Bracing of Suspended Utilities-</u> 2007 California Building Code Edition, OPA-0485-07 International Seismic Application Technology (ISAT) Vol. 2 HVAC Duct, Mechanical Piping, Plumbing, Process Piping & Equipment - 2. OSHPD Pre-Approved Seismic Bracing Manual, OPA-0349, Mason Industries. - 2007 California Building Code (CBC) Title 24, Part 2, Volume 2, Chapter 16A - 4. ASCE 7-05, Chapter 13, Minimum Design Loads For Buildings and Other Structures, American Society of Civil Engineers (ASCE) - ACI 318-05, Building Code Requirements for Structural Concrete, American Concrete Institute (ACI). #### 1.4 COMPONENT IMPORTANCE FACTOR - A. In order to identify systems required seismic restraint and to define those from which restraints may be excluded, the design team has assigned an ASCE 7 Importance Factor (lp) to utility components on the basis of the following: - lp = 1.5 Occupancy Category IV, essential facilities required for post earthquake recovery all "Designated Seismic Systems" per CBC Chapter 17 required for the continued operation of the facility. ## 1.5 SUBMITTALS - A. Contractor to identify and convey to the seismic bracing provider each overhead deck condition to which seismic attachments will be made. Information to include type and density of concrete, concrete thickness, size and gage of metal deck, type and size of steel member and any point load limitations or restrictions. - B. Provide Seismic Design Force calculations per ASCE 7- 05, Formulas 13.3-1 thru 13.3-3 stamped by a qualified structural engineer licensed to practice in the State of California. For multi-story projects, provide calculated Seismic Design Force for each floor. Provide all OSHPD applications and forms to Architect as required for submission to OSHPD as a post approval document. - C. If not already furnished in contract documents, submit seismic restraint layouts stamped by a qualified structural engineer licensed to practice in the State of California. Seismic restraint layouts to show: - 1. All vertical support and seismic brace locations. - 2. All anchorage connections to structure. Anchor brand, type, quantity and size. - Vertical support and brace reaction point load at all connections to structure. For review by engineer of record in checking suitability of the building structure to accommodate imposed loads. - Plan set sheets showing appropriate installation details reflecting actual job site conditions. - D. Include cover sheet with Seismic Restraint Bracing Legend delineating: - 1. Maximum Allowable Size or Utility Weight (Lbs/Lf). - 2. Minimum Vertical Support Rod Diameter. - 3. Support Rod Total Vertical Load. - 4. Maximum Allowable Transverse Brace Spacing. - 5. Transverse Brace Reaction. - 6. Maximum Allowable Longitudinal Brace Spacing. - 7. Longitudinal Brace Reaction. - 8. Minimum Required Seismic Restraint Brace Arm Assembly. - 9. Minimum Required Seismic Restraint Anchorage To Overhead Structure. - 10. Installation Detail Drawing References ### PART 2 - PRODUCTS ### 2.1 ACCEPTABLE MANUFACTURERS - A. Seismic restraint hardware and engineering to be that furnished by International Seismic Application Technology (ISAT) 877-999-4728, www.isatsb.com or by Mason Industries. - B. Vertical support and seismic restraint anchorages are to utilize deck inserts or post installed anchors as approved by the seismic bracing manufacturer. - C. Vertical support and seismic restraint connections to structural steel are to utilize Beam Clamp connections unless noted otherwise. Welded or bolted connections are an acceptable alternate provided the details employed are those pre-engineered by the seismic bracing manufacturer. - D. The total cost of materials, installation, engineering, etc. shall be included in the contractors bid. ### PART 3 - EXECUTION ### 3.1 INSTALLATION - A. Vertical support and seismic restraint anchorages to be per the OSHPD pre-approved manual or calculations submitted for approval. - B. For conditions not covered within the OSHPD pre-approved manual, provide project specific calculations and details. - C. The seismic bracing manufacturer shall provide field installation training prior to commencement of install. - D. Field relocation of any seismic installation points away from that shown on the furnished shop drawing layouts shall be coordinated with the seismic bracing manufacturer. - E. Consult the seismic bracing manufacturer when field conditions prohibit compliance with the supplied installation details. - F. In order to satisfy CBC 2007 requirements, the allowable brace spacing for non-ductile systems
(eg. cast iron, plastic and glass pipe) shall be no more than half that for ductile systems. ## 3.2 EQUIPMENT CONNECTIONS A. Where seismic bracing is allowed to be omitted due to component size or proximity to overhead deck, all terminations to fixed equipment, panels, etc. or to other portions of the system requiring seismic restraint are to utilize flexible connectors. **END OF SECTION** THIS PAGE INTENTIONALLY BLANK # **SECTION 23 0553** ## IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT ### PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY ### A. Section Includes: - 1. Equipment labels. - 2. Access Door Labels. - 3. Warning signs and labels. - 4. Pipe labels. - Duct labels. - 6. Valve tags. - Warning tags. ## 1.3 ACTION SUBMITTALS - A. Product Data: For each type of product indicated. - B. Samples: For color, letter style, and graphic representation required for each identification material and device. - Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label. - D. Valve numbering scheme. - E. Valve Schedules: For each piping system to include in maintenance manuals. ## 1.4 COORDINATION - A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied. - B. Coordinate installation of identifying devices with locations of access panels and doors. - C. Install identifying devices before installing acoustical ceilings and similar concealment. #### PART 2 - PRODUCTS ## 2.1 EQUIPMENT LABELS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Seton. - Brady. - Craftmark. # B. Plastic Labels for Equipment: - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware. - 2. Letter Color: White. - 3. Background Color: Black. - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F. - 5. Minimum Label Size: Length and width vary for required label content, but not less than 6 x 2 inches. - 6. Minimum Letter Size: 1 ½" inch for name of units if viewing distance is less than 24 inches, 2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering. - 7. Fasteners: Stainless-steel rivets or self-tapping screws. - 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate. - C. Label Content: Include equipment's Drawing designation or unique equipment number, and the area served. See the following example: | TU-25 | AHU-1 | EF-3 | |--------------|-----------------------|--| | Patient Room | 4 th Floor | Isolation Rooms | | 201 | West | 1 st , 2 nd , 3 rd Floors | D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data. # 2.2 ACCESS DOOR LABELS (FIRE AND SMOKE DAMPERS) - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Seton. - 2. Brady. - Craftmark. - A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware. - B. Letter Color: White. - C. Background Color: Red. - D. Maximum Temperature: Able to withstand temperatures up to 160 deg F. - E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch. - F. Minimum Letter Size: 1 1/2 inch for name of units if viewing distance is less than 24 inches, 2 inches for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering. - G. Fasteners: Stainless-steel rivets or self-tapping screws. - H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate. - I. Label Content: Identify equipment (i.e. Combination Smoke Fire Damper) as required by code. ## 2.3 WARNING SIGNS AND LABELS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Seton. - 2. Brady. - Craftmark. - B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware. - C. Letter Color: Black. - D. Background Color: Yellow or orange. - E. Maximum Temperature: Able to withstand temperatures up to 160 deg F. - F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch. - G. Minimum Letter Size: 1 ½ inch for name of units if viewing distance is less than 24 inches, 2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering. - H. Fasteners: Stainless-steel rivets or self-tapping screws. - I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate. - J. Label Content: Include caution and warning information, plus emergency notification instructions. ### 2.4 PIPE LABELS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Seton. - 2. Brady. - Craftmark. - B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction. - C. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive. Outdoor pipe labels shall be high performance over laminated polyester material. - D. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing. - E. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction. - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction. - 2. Lettering Size: At least 1-1/2 incheshigh. #### 2.5 DUCT LABELS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Seton. - 2. Brady. - 3. Craftmark. - B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware. - C. Maximum Temperature: Able to withstand temperatures up to 160 deg F. - D. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch. - E. Minimum Letter Size: 1 ½ inch for name of units if viewing distance is less than 24 inches, 2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering. - F. Fasteners: Stainless-steel rivets or self-tapping screws. - G. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate. - H. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction. - 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction. - 2. Lettering Size: At least 1-1/2 incheshigh. ## 2.6 VALVE TAGS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - Seton. - 2. Brady. - 3. Craftmark. - B. Valve Tags: 1-1/2" diameter engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers. - 1. Tag Material: Multi-layered acrylic, 0.0625-inch minimum thickness, and having predrilled or stamped holes for attachment hardware. - 2. Fasteners: Brass wire-link or beaded chain; or S-hook. - C. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses. - 1. Valve-tag schedule shall be included in operation and maintenance data. #### 2.7 WARNING TAGS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Seton. - 2. Brady. - 3. Craftmark. - B. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing. - 1. Size: 3 by 5-1/4 inches minimum. - 2. Fasteners: Brass grommet and wire. - Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE." - 4. Color: Yellow background with black lettering. ## PART 3 - EXECUTION 3. #### 3.1 PREPARATION A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants. ## 3.2 EQUIPMENT LABEL INSTALLATION - A. Install or permanently fasten labels on each major item of mechanical equipment. - B. Locate equipment labels
where accessible and visible. - C. Install labels on each fire, smoke, or combination fire/smoke damper access door. ### 3.3 PIPE LABEL INSTALLATION - A. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows: - Near each valve and control device. - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch. - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures. - At access doors, manholes, and similar access points that permit view of concealed piping. - 5. Near major equipment items and other points of origination and termination. - 6. Spaced at maximum intervals of 25 feet along each run. Reduce intervals to 10 feet in areas of congested piping and equipment. - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels. ## B. Pipe Label Color Schedule: - Chilled-Water Piping: - a. Background Color: Green. - b. Letter Color: White. - 2. Heating Water Piping: - Background Color: Yellow. - b. Letter Color: Black. - 3. Low-Pressure Steam Piping - a. Background Color: Yellow - b. Letter Color: Black - 4. Steam Condensate Piping - a. Background Color: Yellow - b. Letter Color: Black ## 3.4 DUCT LABEL INSTALLATION - Install plastic-laminated duct labels with permanent adhesive on air ducts in the following color codes: - 1. Blue background with white lettering: For supply ducts. - 2. Green background with white lettering: For exhaust-, outside-, relief-, return-, and mixed-air ducts. - 3. ASME A13.1 Colors and Designs: For hazardous material exhaust. - B. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 25 feet in each space where ducts are exposed or concealed by removable ceiling system. ## 3.5 VALVE-TAG INSTALLATION - A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule. - B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs: - 1. Valve-Tag Size and Shape: - a. 2 inches, round. - 2. Valve-Tag Color: Natural brass. - 3. Letter Color: Black ### 3.6 WARNING-TAG INSTALLATION A. Write required message on, and attach warning tags to, equipment and other items where required. **END OF SECTION** THIS PAGE INTENTIONALLY BLANK ### **SECTION 23 0593** ## TESTING, ADJUSTING, AND BALANCING FOR HVAC ### PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY #### A. Section Includes: - 1. Balancing Air Systems: - a. Constant-volume air systems. - 2. Balancing Hydronic Piping Systems: - a. Constant-flow hydronic systems. - b. Variable-flow hydronic systems. - c. Primary-secondary hydronic systems. #### 1.3 DEFINITIONS - A. AABC: Associated Air Balance Council. - B. NEBB: National Environmental Balancing Bureau. - C. TAB: Testing, adjusting, and balancing. - D. TABB: Testing, Adjusting, and Balancing Bureau. - E. TAB Specialist: An entity engaged to perform TAB Work. ## 1.4 INFORMATIONAL SUBMITTALS - A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article. - B. Contract Documents Examination Report: Within 30 days of Contractor's Notice to Proceed, submit the Contract Documents review report as specified in Part 3. - C. Strategies and Procedures Plan: Within 90 days of Contractor's Notice to Proceed, submit TAB strategies and step-by-step procedures as specified in "Preparation" Article. - D. Certified TAB reports. - E. Sample report forms. - F. Instrument calibration reports, to include the following: - 1. Instrument type and make. - 2. Serial number. - Application. - 4. Dates of use. - Dates of calibration. ### 1.5 QUALITY ASSURANCE - A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC or NEBB. - 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC or NEBB. - 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC or NEBB as a TAB technician. - B. TAB Conference: Meet with Architect, Owner, Construction Manager, and Engineer on approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Require the participation of the TAB field supervisor and technicians. Provide 14 days' advance notice of scheduled meeting time and location. - Agenda Items: - a. The Contract Documents examination report. - b. The TAB plan. - c. Coordination and cooperation of trades and subcontractors. - d. Coordination of documentation and communication flow. - C. Certify TAB field data reports and perform the following: - Review field data reports to validate accuracy of data and to prepare certified TAB reports. - 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification. - D. TAB Report Forms: Use standard TAB contractor's forms approved by Architect and Engineer. - E. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation." - F. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 "Air Balancing." - G. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 "System Balancing." #### 1.6 PROJECT CONDITIONS A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations. ## 1.7 COORDINATION - A. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times. - B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed. ### PART 2 - PRODUCTS (Not Applicable) #### PART 3 - EXECUTION ### 3.1 TAB SPECIALISTS - A. Subject to compliance with requirements, engage one of the following: - 1. Matrix Air Balance - 2. American Air Balance Company - 3. Winaire - 4. Los Angeles Air Balance #### 3.2 EXAMINATION - A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment. - B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible. - C. Examine the approved submittals for HVAC systems and equipment. - D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls. - E. Examine equipment performance data including fan and pump curves. - Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system. - 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions. - F. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed. - G. Examine test reports specified in individual system and equipment Sections. - H. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation. - I. Examine terminal units, such as constant-air-volume boxes, and verify that they are accessible and their controls are connected and functioning. - J. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations. - K. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows. - L. Examine heat-transfer coils for correct piping connections and for clean and straight fins. - M. Examine system pumps to ensure absence of entrained air in the suction piping. - N. Examine operating safety interlocks and controls on HVAC equipment. - O. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values. ### 3.3 PREPARATION - A. Prepare a TAB plan that includes strategies and step-by-step procedures. - B. Complete system-readiness checks and prepare reports. Verify the following: - 1. Permanent electrical-power wiring is complete. - 2. Hydronic systems are filled, clean, and free of air. - 3. Automatic temperature-control systems are operational. - 4. Equipment and duct access doors are securely closed. - 5. Balance, smoke, and fire dampers are open. - 6. Isolating and balancing valves are open and control valves are operational. - 7. Ceilings are installed in critical
areas where air-pattern adjustments are required and access to balancing devices is provided. - Windows and doors can be closed so indicated conditions for system operations can be met. ### 3.4 GENERAL PROCEDURES FOR TESTING AND BALANCING - A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" or NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and in this Section. - 1. Comply with requirements in ASHRAE 62.1, Section 7.2.2 "Air Balancing." - B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures. - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts. - 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Division 23 "Duct Accessories." - 3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Division 23 "Duct Insulation," Division 23 "HVAC Equipment Insulation," and Division 23 "HVAC Piping Insulation." - C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings. - D. Take and report testing and balancing measurements in inch-pound (IP) units. ## 3.5 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS - A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes. - B. Prepare schematic diagrams of systems' "as-built" duct layouts. - C. Determine the best locations in main and branch ducts for accurate duct-airflow measurements. - D. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers. - E. Locate start-stop and disconnect switches, electrical interlocks, and motor starters. - F. Verify that motor starters are equipped with properly sized thermal protection. - G. Check dampers for proper position to achieve desired airflow path. - H. Check for airflow blockages. - I. Check condensate drains for proper connections and functioning. - J. Check for proper sealing of air-handling-unit components. - K. Verify that air duct system is sealed as specified in Division 23 "Metal Ducts." ### 3.6 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS - A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer. - 1. Measure total airflow. - a. Measure both design and maximum capacity CFM's listed in air handler schedule on drawings to confirm capability. - 2. Measure fan static pressures as follows to determine actual static pressure: - a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions. - b. Measure static pressure directly at the fan outlet or through the flexible connection. - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions. - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan. - 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment. - a. Report the cleanliness status of filters and the time static pressures are measured. - 4. Measure static pressures entering and leaving other devices, such as sound traps, and heat-recovery equipment, under final balanced conditions. - 5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions. - Obtain approval from Architect and Engineer for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance. - 7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower. - B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances. - Measure airflow of submain and branch ducts. - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone. - 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved. - 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances. - C. Measure air outlets and inlets without making adjustments. - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors. - D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals. - 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents. - 2. Adjust patterns of adjustable outlets for proper distribution without drafts. #### 3.7 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS - A. Prepare test reports with pertinent design data, and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against the approved pump flow rate. Correct variations that exceed plus or minus 5 percent. - B. Prepare schematic diagrams of systems' "as-built" piping layouts. - C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above: - 1. Open all manual valves for maximum flow. - 2. Check liquid level in expansion tank. - 3. Check makeup water-station pressure gage for adequate pressure for highest vent. - 4. Check flow-control valves for specified sequence of operation, and set at indicated flow. - 5. Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open. - 6. Set system controls so automatic valves are wide open to heat exchangers. - 7. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded. - 8. Check air vents for a forceful liquid flow exiting from vents when manually operated. ### 3.8 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS A. Measure water flow at pumps. Use the following procedures except for positive-displacement pumps: - Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size. - a. If impeller sizes must be adjusted to achieve pump performance, obtain approval from Architect and Engineer and comply with requirements in Division 23 "Hydronic Pumps." - 2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved. - Monitor motor performance during procedures and do not operate motors in overload conditions. - 3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage. - 4. Report flow rates that are not within plus or minus 10 percent of design. - B. Measure flow at all automatic flow control valves to verify that valves are functioning as designed. - C. Measure flow at all pressure-independent characterized control valves, with valves in fully open position, to verify that valves are functioning as designed. - D. Set calibrated balancing valves, if installed, at calculated presettings. - E. Measure flow at all stations and adjust, where necessary, to obtain first balance. - System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device. - F. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow. - G. Adjust balancing stations to within specified tolerances of indicated flow rate as follows: - 1. Determine the balancing station with the highest percentage over indicated flow. - Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow - 3. Record settings and mark balancing devices. - H. Measure pump flow rate and
make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature. - I. Measure the differential-pressure-control-valve settings existing at the conclusion of balancing. - J. Check settings and operation of each safety valve. Record settings. ### 3.9 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS A. Balance systems with automatic two-way control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems. Confirm proper automatic flow control valves are installed and record model number and size in report. ### 3.10 PROCEDURES FOR PRIMARY-SECONDARY HYDRONIC SYSTEMS A. Balance the primary circuit flow first and then balance the secondary circuits. #### 3.11 PROCEDURES FOR CHILLERS - A. Balance water flow through each evaporator to within specified tolerances of indicated flow with all pumps operating. With only one chiller operating in a multiple chiller installation, do not exceed the flow for the maximum tube velocity recommended by the chiller manufacturer. Measure and record the following data with each chiller operating at design conditions: - 1. Evaporator-water entering and leaving temperatures, pressure drop, and water flow. - 2. For water-cooled chillers, condenser-water entering and leaving temperatures, pressure drop, and water flow. - 3. Evaporator and condenser refrigerant temperatures and pressures, using instruments furnished by chiller manufacturer. - 4. Power factor if factory-installed instrumentation is furnished for measuring kilowatts. - 5. Kilowatt input if factory-installed instrumentation is furnished for measuring kilowatts. - 6. Capacity: Calculate in tons of cooling. - 7. For air-cooled chillers, verify condenser-fan rotation and record fan and motor data including number of fans and entering- and leaving-air temperatures. ## 3.12 PROCEDURES FOR MOTORS - A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data: - 1. Manufacturer's name, model number, and serial number. - 2. Motor horsepower rating. - 3. Motor rpm. - 4. Efficiency rating. - 5. Nameplate and measured voltage, each phase. - 6. Nameplate and measured amperage, each phase. - 7 Starter thermal-protection-element rating. - B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data. ### 3.13 PROCEDURES FOR BOILERS A. Hydronic Boilers: Measure and record entering- and leaving-water temperatures and water flow. ## 3.14 PROCEDURES FOR HEAT-TRANSFER COILS - A. Measure, adjust, and record the following data for each water coil: - 1. Entering- and leaving-water temperature. - 2. Water flow rate. - 3. Water pressure drop. - 4. Dry-bulb temperature of entering and leaving air. - 5. Wet-bulb temperature of entering and leaving air for cooling coils. - Airflow. - 7. Air pressure drop. - B. Measure, adjust, and record the following data for each refrigerant coil: - 1. Dry-bulb temperature of entering and leaving air. - 2. Wet-bulb temperature of entering and leaving air. - Airflow. - 4. Air pressure drop. - 5. Refrigerant suction pressure and temperature. ### 3.15 TOLERANCES - A. Set HVAC system's air flow rates and water flow rates within the following tolerances: - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent. - 2. Air Outlets and Inlets: Plus or minus 10 percent. - 3. Heating-Water Flow Rate: Plus or minus 10 percent. - 4. Cooling-Water Flow Rate: Plus or minus 10 percent. ## 3.16 REPORTING - A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices. - B. Status Reports: Prepare weekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors. #### 3.17 FINAL REPORT - A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems. - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer. - 2. Include a list of instruments used for procedures, along with proof of calibration. - B. Final Report Contents: In addition to certified field-report data, include the following: - 1. Pump curves. - Fan curves. - 3. Manufacturers' test data. - 4. Field test reports prepared by system and equipment installers. - 5. Other information relative to equipment performance; do not include Shop Drawings and product data. - C. General Report Data: In addition to form titles and entries, include the following data: - Title page. - 2. Name and address of the TAB contractor. - 3. Project name. - 4. Project location. - 5. Architect's name and address. - 6. Engineer's name and address. - 7. Contractor's name and address. - 8. Report date. - 9. Signature of TAB supervisor who certifies the report. - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report. - 11. Summary of contents including the following: - a. Indicated versus final performance. - b. Notable characteristics of systems. - c. Description of system operation sequence if it varies from the Contract Documents. - 12. Nomenclature sheets for each item of equipment. - 13. Data for terminal units, including manufacturer's name, type, size, and fittings. - 14. Notes to explain why certain final data in the body of reports vary from indicated values. - 15. Test conditions for fans and pump performance forms including the following: - a. Settings for outdoor-, return-, and exhaust-air dampers. - b. Conditions of filters. - c. Cooling coil, wet- and dry-bulb conditions. - d. Face and bypass damper settings at coils. - e. Fan drive settings including settings and percentage of maximum pitch diameter. - f. VFD settings. - g. Settings for supply-air, static-pressure controller. - h. Other system operating conditions that affect performance. - D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following: - 1. Quantities of outdoor, supply, return, and exhaust airflows. - 2. Water and steam flow rates. - 3. Duct, outlet, and inlet sizes. - 4. Pipe and valve sizes and locations. - Terminal units. - 6. Balancing stations. - 7. Position of balancing devices. - E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following: - 1. Unit Data: - a. Unit identification. - b. Location. - c. Make and type. - d. Model number and unit size. - e. Manufacturer's serial number. - f. Unit arrangement and class. - g. Discharge arrangement. - h. Sheave make, size in inches, and bore. - i. Center-to-center dimensions of sheave, and amount of adjustments in inches. - j. Number, make, and size of belts. - k. Number, type, and size of filters. - Motor Data: - a. Motor make, and frame type and size. - b. Horsepower and rpm. - c. Volts, phase, and hertz. - d. Full-load amperage and service factor. - e. Sheave make, size in inches, and bore. - f. Center-to-center dimensions of sheave, and amount of adjustments in inches. - 3. Test Data (Indicated and Actual Values): - a. Total air flow rate in cfm. - b. Total system static pressure in inches wg. - c. Fan rpm. - d. Discharge static pressure in inches wg. - e. Filter static-pressure differential in inches wg. - f. Preheat-coil static-pressure differential in inches wg. - g. Cooling-coil static-pressure differential in inches wg. - h. Heating-coil static-pressure differential in inches wg. - i. Outdoor airflow in cfm. - j. Return airflow in cfm. - k. Outdoor-air damper position. - I. Return-air damper position. - m. Vortex damper position. - F. Fan Test Reports: For supply, return, and exhaust fans, include the following: - 1. Fan Data: - a. System identification. - b. Location. - c. Make and type. - d. Model number and size. - e. Manufacturer's serial number. - f. Arrangement and class. - g. Sheave make, size in inches, and bore. - h. Center-to-center dimensions of sheave, and amount of adjustments in inches. ## 2. Motor Data: - a. Motor make, and frame type and size. - b. Horsepower and rpm. - c. Volts, phase, and hertz. - d. Full-load amperage and service factor. - e. Sheave make, size in inches, and bore. - f. Center-to-center dimensions of sheave, and amount of adjustments in inches. - g. Number, make, and size of belts. - Test Data (Indicated and Actual Values): - a. Total airflow rate in cfm. - b. Total system static pressure in inches wg. - c. Fan rpm. - d. Discharge static pressure in inches wg. - e. Suction static pressure in inches wg. - G. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following: - 1. Report Data: - a. System and air-handling-unit number. - b. Location and zone. - c. Traverse air temperature in deg F. - d. Duct static pressure in inches wg. - e. Duct size in inches. - f. Duct area in sq. ft.. - g. Indicated air flow rate in cfm. - h. Indicated velocity in fpm. - i. Actual air flow rate in cfm. - j. Actual average velocity in fpm. - k. Barometric pressure
in psig. - H. Air-Terminal-Device Reports: - 1. Unit Data: - a. System and air-handling unit identification. - b. Location and zone. - c. Apparatus used for test. - d. Area served. - e. Make. - f. Number from system diagram. - g. Type and model number. - h. Size. - i. Effective area in sq. ft.. - 2. Test Data (Indicated and Actual Values): - a. Air flow rate in cfm. - b. Air velocity in fpm. - c. Preliminary air flow rate as needed in cfm. - d. Preliminary velocity as needed in fpm. - e. Final air flow rate in cfm. - f. Final velocity in fpm. - g. Space temperature in deg F. - I. System-Coil Reports: For reheat coils and water coils of terminal units, include the following: - 1. Unit Data: - a. System and air-handling-unit identification. - b. Location and zone. - c. Room or riser served. - d. Coil make and size. - e. Flowmeter type. - Test Data (Indicated and Actual Values): - a. Air flow rate in cfm. - b. Entering-water temperature in deg F. - c. Leaving-water temperature in deg F. - d. Water pressure drop in feet of head or psig. - e. Entering-air temperature in deg F. - f. Leaving-air temperature in deg F. - J. Hot Water Boiler Test Reports: For Hot Water Boilers include the following: - 1. Unit Data: - a. Unit identification. - b. Location. - c. Service. - d. Rating BTU hour. - e. Make and size. - f. Model number and serial number. - 2. Test Data (Design and Actual Values): - a. Pressure PSI. - b. Control Setting. - K. Air Cooled Chiller Test Reports: For Air Cooled Chillers include the following: - 1. Unit Data: - a. Unit identification. - b. Manufacturer. - c. Capacity. - d. Model number and serial number. - 2. Evaporator Test Data (Design and Actual Values): - a. Entering Water Temperature. - b. Leaving Water Temperature. - c. Pressure Drop in Feet. - d. GPM. - 3. Condenser Test Data (Design and Actual Values): - a. Entering Air Temperature. - 4. Electrical Test Data (Design and Actual Values): - a. Compressor Amps. - b. Compressor Volts. - c. Fan Amps. - d. Fan Volts. - L. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following: - 1. Unit Data: - Unit identification. - b. Location. - c. Service. - d. Make and size. - e. Model number and serial number. - f. Water flow rate in gpm. - g. Water pressure differential in feet of head or psig. - h. Required net positive suction head in feet of head or psig. - i. Pump rpm. - j. Impeller diameter in inches. - k. Motor make and frame size. - Motor horsepower and rpm. - m. Voltage at each connection. - n. Amperage for each phase. - o. Full-load amperage and service factor. - p. Seal type. - 2. Test Data (Indicated and Actual Values): - a. Static head in feet of head or psig. - b. Pump shutoff pressure in feet of head or psig. - c. Actual impeller size in inches. - d. Full-open flow rate in gpm. - e. Full-open pressure in feet of head or psig. - f. Final discharge pressure in feet of head or psig. - g. Final suction pressure in feet of head or psig. - h. Final total pressure in feet of head or psig. - i. Final water flow rate in gpm. - j. Voltage at each connection. - k. Amperage for each phase. - M. Air-Cooled Chiller Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following: - 1. Unit Data: - Unit identification. - b. Location. - c. Service. - d. Make and size. - e. Model number and serial number. - f. Water flow rate in gpm. - Water pressure differential in feet of head or psig. - h. Required net positive suction head in feet of head or psig. - i. Pump rpm. - j. Impeller diameter in inches. - k. Motor make and frame size. - Motor horsepower and rpm. - m. Voltage at each connection. - n. Amperage for each phase. - o. Full-load amperage and service factor. - p. Seal type. - 2. Test Data (Indicated and Actual Values): - Static head in feet of head or psig. - b. Pump shutoff pressure in feet of head or psig. - c. Actual impeller size in inches. - d. Full-open flow rate in gpm. - e. Full-open pressure in feet of head or psig. - f. Final discharge pressure in feet of head or psig. - g. Final suction pressure in feet of head or psig. - h. Final total pressure in feet of head or psig. - i. Final water flow rate in gpm. - Voltage at each connection. - k. Amperage for each phase. - N. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following: - 1. Unit Data: - a. Unit identification. - b. Location. - c. Service. - d. Make and size. - e. Model number and serial number. - f. Water flow rate in gpm. - g. Water pressure differential in feet of head or psig. - h. Required net positive suction head in feet of head or psig. - i. Pump rpm. - i. Impeller diameter in inches. - k. Motor make and frame size. - I. Motor horsepower and rpm. - m. Voltage at each connection. - n. Amperage for each phase. - o. Full-load amperage and service factor. - p. Seal type. ## 2. Test Data (Indicated and Actual Values): - Static head in feet of head or psig. - b. Pump shutoff pressure in feet of head or psig. - c. Actual impeller size in inches. - d. Full-open flow rate in gpm. - e. Full-open pressure in feet of head or psig. - f. Final discharge pressure in feet of head or psig. - g Final suction pressure in feet of head or psig. - h. Final total pressure in feet of head or psig. - i. Final water flow rate in gpm. - j. Voltage at each connection. - k. Amperage for each phase. ### O. Instrument Calibration Reports: ## 1. Report Data: - a. Instrument type and make. - b. Serial number. - c. Application. - d. Dates of use. - e. Dates of calibration. ## 3.18 INSPECTIONS ## A. Initial Inspection: - 1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the final report. - 2. Check the following for each system: - a. Measure airflow of at least 10 percent of air outlets. - b. Measure water flow of at least 5 percent of terminals. - c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point. - d. Verify that balancing devices are marked with final balance position. - e. Note deviations from the Contract Documents in the final report. ### B. Final Inspection: - 1. After initial inspection is complete and documentation by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by Engineer, Owner, and Construction Manager. - 2. The TAB contractor's test and balance engineer shall conduct the inspection in the presence of Engineer, Owner, and Construction Manager. - Owner shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day. - If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED." - 5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected. - C. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails, proceed as follows: - 1. Recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection. - 2. If the second final inspection also fails, Owner may contract the services of another TAB contractor to complete TAB Work according to the Contract Documents and deduct the cost of the services from the original TAB contractor's final payment. - D. Prepare test and inspection reports. #### 3.19 ADDITIONAL TESTS - A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions. - B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions. **END OF SECTION** #### **SECTION 23 0713** #### **DUCT INSULATION** #### PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Divi2sion 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. Section includes insulating the following duct services: - 1. Indoor, concealed supply, return and outdoor air. - 2. Indoor, exposed supply, return and outdoor air. - 3. Indoor, concealed exhaust between isolation damper and penetration of building exterior. - Indoor, exposed exhaust between isolation damper and penetration of building exterior. #### B. Related Sections: - 1. Division 23 "HVAC Equipment Insulation." - 2. Division 23 "HVAC Piping Insulation." - 3. Division 23 "Metal Ducts" for duct liners. ### 1.3 ACTION SUBMITTALS - A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any). - B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work. - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger. - 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation. - 3. Detail application of field-applied jackets. - Detail application at linkages of control devices. ### 1.4 INFORMATIONAL SUBMITTALS - A. Qualification Data: For qualified Installer. - B. Material Test Reports: From a qualified testing agency acceptable to authorities having
jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed. C. Field quality-control reports. #### 1.5 QUALITY ASSURANCE - A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training. - B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency. - Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less. - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less. ## 1.6 DELIVERY, STORAGE, AND HANDLING A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature. #### 1.7 COORDINATION - A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 23 "Hangers and Supports for HVAC Piping and Equipment." - B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance. ### 1.8 SCHEDULING - A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results. - B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction #### PART 2 - PRODUCTS ### 2.1 INSULATION MATERIALS A. Comply with requirements in "Duct Insulation Schedule, General," "Indoor Duct and Plenum Insulation Schedule," and "Aboveground, Outdoor Duct and Plenum Insulation Schedule" articles for where insulating materials shall be applied. - B. Products shall not contain asbestos, lead, mercury, or mercury compounds, or PBDE's (Polybrominated Diphenyl Ethers). - C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871. - D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795. - E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process. - F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article. - 1. Products: Subject to compliance with requirements, provide one of the following: - a. CertainTeed Corp.; SoftTouch Duct Wrap. - b. Johns Manville; Microlite. - c. Knauf Insulation; Friendly Feel Duct Wrap. - d. Owens Corning; SOFTR All-Service Duct Wrap. ### 2.2 NOISE BARRIER LAGGING - A. Noise Barrier wrap: Fire-Resistant, mass-loaded, limp vinyl with a layer of reinforced aluminum foil facing on one side. - 1. Products: Subject to compliance with requirements, provide one of the following: - a. Kinetics Noise Control, Inc. (Model KNM-100AL) - 2. Sound Transmission Loss when tested as a free hanging barrier shall be: | Frequency, | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | |---------------|----|-----|-----|-----|------|------|------| | KNM-
100AL | _ | 13 | 17 | 21 | 28 | 33 | 40 | #### 2.3 ADHESIVES - A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated. - B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A. - 1. Products: Subject to compliance with requirements, provide one of the following: - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127.Eagle Bridges Marathon Industries; 225. - Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.Mon-Eco Industries, Inc.; 22-25. - 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers." - C. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints. - 1. Products: Subject to compliance with requirements, provide one of the following: - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82. - b. Eagle Bridges Marathon Industries; 225. - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50.Mon-Eco Industries, Inc.; 22-25. - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers." ### 2.4 MASTICS - A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II. - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). - B. Vapor-Barrier Mastic: Water based: suitable for indoor use on below ambient services. - 1. Products: Subject to compliance with requirements, provide one of the following: - a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90. - b. Vimasco Corporation; 749. - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness. - 3. Service Temperature Range: Minus 20 to plus 180 deg F. - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight. - 5. Color: White. ### 2.5 SEALANTS - A. FSK and Metal Jacket Flashing Sealants: - 1. Products: Subject to compliance with requirements, provide one of the following: - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.Eagle Bridges Marathon Industries; 405. - b. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44. - c. Mon-Eco Industries, Inc.; 44-05. - 2. Materials shall be compatible with insulation materials, jackets, and substrates. - 3. Fire- and water-resistant, flexible, elastomeric sealant. - 4. Service Temperature Range: Minus 40 to plus 250 deg F. - 5. Color: Aluminum. - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59. Subpart D (EPA Method 24). - 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers." ### B. ASJ Flashing Sealants: - 1. Products: Subject to compliance with requirements, provide one of the following: - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76. - 2. Materials shall be compatible with insulation materials, jackets, and substrates. - 3. Fire- and water-resistant, flexible, elastomeric sealant. - 4. Service Temperature Range: Minus 40 to plus 250 deg F. - 5. Color: White. - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). - 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers." ### 2.6 FACTORY-APPLIED JACKETS - A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following: - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I. - ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I. - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II. - 4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II. - 5. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested according to ASTM E 96/E 96M, Procedure A, and complying with NFPA 90A and NFPA 90B. ### 2.7 TAPES - A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136. - 1. Products: Subject to compliance with requirements, provide one of the following: - a. ABI, Ideal Tape Division; 428 AWF ASJ. - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836. - c. Compac Corporation; 104 and 105. - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW
Plus/SQ. - 2. Width: 3 inches. - 3. Thickness: 11.5 mils. - 4. Adhesion: 90 ounces force/inch in width. - 5. Elongation: 2 percent. - 6. Tensile Strength: 40 lbf/inch in width. - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape. - B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136. - 1. Products: Subject to compliance with requirements, provide one of the following: - a. ABI, Ideal Tape Division; 491 AWF FSK. - b. Avery Dennison Corporation, Specialty Tapes Division, Fasson 0827. - c. Compac Corporation; 110 and 111. - d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ. - 2. Width: 3 inches. - 3. Thickness: 6.5 mils. - 4. Adhesion: 90 ounces force/inch in width. - 5. Elongation: 2 percent. - 6. Tensile Strength: 40 lbf/inch in width. - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape. ## 2.8 SECUREMENTS - A. Insulation Pins and Hangers: - Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated. - a. Products: Subject to compliance with requirements, provide one of the following: - 1) AGM Industries, Inc.; CWP-1. - GEMCO; CD. - 3) Midwest Fasteners, Inc.; CD. - 4) Nelson Stud Welding; TPA, TPC, and TPS. - 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter. - a. Products: Subject to compliance with requirements, provide one of the following: - 1) AGM Industries, Inc.; RC-150. - 2) GEMCO; R-150. - 3) Midwest Fasteners, Inc.; WA-150. - 4) Nelson Stud Welding; Speed Clips. - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations. - B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel. - C. Wire: 0.080-inch nickel-copper alloy and 0.062-inch soft-annealed, stainless steel (MRI rooms). - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - a. C & F Wire. #### PART 3 - EXECUTION ### 3.1 EXAMINATION - A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application. - 1. Verify that systems to be insulated have been tested and are free of defects. - 2. Verify that surfaces to be insulated are clean and dry. - B. Proceed with installation only after unsatisfactory conditions have been corrected. ### 3.2 PREPARATION A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application. #### 3.3 GENERAL INSTALLATION REQUIREMENTS A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings. - B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules. - C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state. - D. Install insulation with longitudinal seams at top and bottom of horizontal runs. - E. Install multiple layers of insulation with longitudinal and end seams staggered. - F. Keep insulation materials dry during application and finishing. - G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer. - H. Install insulation with least number of joints practical. - I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic. - 1. Install insulation continuously through hangers and around anchor attachments. - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic. - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer. - J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses. - K. Install insulation with factory-applied jackets as follows: - Draw jacket tight and smooth. - Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c. - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c. - a. For below ambient services, apply vapor-barrier mastic over staples. - Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal. - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings. - L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness. - M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement. N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints. #### 3.4 PENETRATIONS - A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations. - 1. Seal penetrations with flashing sealant. - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant. - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing. - 4. Seal jacket to roof flashing with flashing sealant. - B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations. - Seal penetrations with flashing sealant. - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant. - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches. - 4. Seal jacket to wall flashing with flashing sealant. - C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions. - D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches. - 1. Comply with requirements in Division 21 "Through-Penetration Firestop Systems" for firestopping and fire-resistive joint sealers. - E. Insulation Installation at Floor Penetrations: - 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches. - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 07841 "Through-Penetration Firestop Systems." #### 3.5 INSTALLATION OF MINERAL-FIBER INSULATION A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins. - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces. - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions. - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows: - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c. - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing. - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums. - d. Do not overcompress insulation during installation. - e. Impale insulation over pins and attach speed washers. - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing. - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one
edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions. - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal. - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches. - 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c. - 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow. - 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c. ## 3.6 NOISE BARRIER LAGGING INSTALLATION A. Where noise barrier wrap is indicated (indicated as shaded on supply ducts), wrap insulated supply ducts with noise barrier in strict accordance with manufacturer's printed installation instructions. - B. Noise barrier shall be overlapped a minimum of 2 inches on all seams and sealed with acrylic adhesive according to manufacturer's installation instructions. - C. Metal bands shall be used at 18 inch o.c. spacing to secure barrier in place. Banding shall not compress the underlying fiberglass duct wrap. Use of adhesive tape to hold noise lagging in place is prohibited. Alternatively, pins and washers can be used to impale the lagging in place, as described for mineral-fiber duct wrap installation. ## 3.7 FIELD QUALITY CONTROL - A. Perform tests and inspections. - B. Tests and Inspections: - 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article. - C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements. - 3.8 DUCT INSULATION SCHEDULE, GENERAL - A. Plenums and Ducts Requiring Insulation: - 1. Indoor, concealed supply, return and outdoor air. - 2. Indoor, exposed supply, return and outdoor air. - 3. Indoor, concealed exhaust between isolation damper and penetration of building exterior. - 4. Indoor, exposed exhaust between isolation damper and penetration of building exterior. - B. Items Not Insulated: - 1. Fibrous-glass ducts. - 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1. - 3. Factory-insulated flexible ducts. - 4. Factory-insulated plenums and casings. - 5. Flexible connectors. - 6. Vibration-control devices. - 7. Factory-insulated access panels and doors. - Ducts exposed within conditioned rooms (below ceilings). ## 3.9 INDOOR DUCT AND PLENUM INSULATION SCHEDULE - A. Concealed, supply-air and return-air duct and plenum insulation shall be the following: - 1. Mineral-Fiber Blanket: 3 inches thick and 0.75-lb/cu. ft. nominal density, R-8.0. - Noise Barrier Wrap (Applies only to Supply ducts shown with honeycomb hatch pattern on plans): 0.10 inches thick and 1 lb/sq.ft. nominal density. Wrap noise barrier over mineral fiber blanket. - B. Concealed, outdoor-air duct and plenum insulation shall be the following: - 1. Mineral-Fiber Blanket: 3 inches thick and 0.75-lb/cu. ft. density, R-8.0. - C. Exposed supply, return, and outside air ducts in unconditioned rooms: - 1. Ducts shall be lined with 2" thick liner, See "Metal Ducts" Section. Note that supply ducts must be double wall construction so that liner is not exposed to the air stream. - D. Concealed, exhaust-air between isolation damper and penetration of building exterior: - 1. Mineral-Fiber Blanket: 2" thick and 0.75 lb/cu.ft. density, R-8.0. - E. Exposed, exhaust-air between isolation damper and penetration of building exterior: - 1. Ducts shall be lined with 2" thick liner. See "Metal Ducts" section. END OF SECTION THIS PAGE INTENTIONALLY BLANK #### **SECTION 23 0716** ### **HVAC EQUIPMENT INSULATION** ## PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. Section includes insulating the following HVAC equipment that is not factory insulated: - 1. Buffer Tanks - 2. Expansion/compression tanks. - 3. Air separators. #### B. Related Sections: - 1. Division 23 "Duct Insulation." - 2. Division 23 "HVAC Piping Insulation." ### 1.3 ACTION SUBMITTALS - A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any). - B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work. - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger. - 2. Detail removable insulation at equipment connections. - 3. Detail application of field-applied jackets. - 4. Detail application at linkages of control devices. - Detail field application for each equipment type. ### 1.4 INFORMATIONAL SUBMITTALS - A. Qualification Data: For qualified Installer. - B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed. - C. Field quality-control reports. #### 1.5 QUALITY ASSURANCE - A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training. - B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency. - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less. - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less. ## 1.6 DELIVERY, STORAGE, AND HANDLING A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature. #### 1.7 COORDINATION - A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 23 "Hangers and Supports for HVAC Piping and Equipment." - B. Coordinate clearance requirements with equipment Installer for equipment insulation application. ## 1.8 SCHEDULING - A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results. - B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction. #### PART 2 - PRODUCTS ### 2.1 INSULATION MATERIALS - A. Comply with requirements in "Breeching Insulation Schedule" and "Equipment Insulation Schedule" articles for where insulating materials shall be applied. - B. Products shall not contain asbestos, lead, mercury, or mercury compounds or PBDE's (Polybrominated Dipenyl Ethers). - C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871. - D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795. - E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process. - F. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. Provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article. - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - a. CertainTeed Corp.; CertaPro Commercial Board. - b. Johns Manville; 800 Series Spin-Glas. - c. Knauf Insulation; Insulation Board. - Owens Corning; Fiberglas 700 Series. - G. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article. - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - a. <u>CertainTeed Corp.; CrimpWrap.</u> - b. Johns Manville; MicroFlex. - c. Knauf Insulation; Pipe and Tank Insulation. - d. Owens Corning; Fiberglas Pipe and Tank Insulation. - H. Flexible
Elastomeric Insulation: Closed-cell, sponge or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials. - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following: - a. Aeroflex USA, Inc. - b. Armacell LLC. - c. K-Flex USA. ## 2.2 INSULATING CEMENTS - A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195. - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - a. Ramco Insulation, Inc.; Super-Stik. - B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196. - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - Ramco Insulation, Inc.; Thermokote V. - C. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449. - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - a. Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote. ## 2.3 ADHESIVES - A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated. - B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A. - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127. - b. <u>Eagle Bridges</u> Marathon Industries; 225. - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70. - d. Mon-Eco Industries, Inc.; 22-25. - 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers." - C. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I. - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following: - a. Aeroflex USA, Inc. - b. Armacell LLC. - c. Foster Brand; H. B. Fuller Construction Products. - d. <u>K-Flex USA</u>. - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers." - D. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints. - 1. <u>Products</u>: Subject to compliance with requirements, vailable products that may be incorporated into the Work include, but are not limited to, the following: - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82. - b. <u>Eagle Bridges</u> Marathon Industries; 225. - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50. - d. Mon-Eco Industries, Inc.; 22-25. - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers." #### 2.4 LAGGING ADHESIVES - A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates. - 1. For indoor applications, use lagging adhesives that have a VOC content of 100 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). - 2. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-50 AHV2. - b. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-36. - c. <u>Vimasco Corporation</u>; 713 and 714. - 3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over equipment insulation. - 4. Service Temperature Range: 0 to plus 180 deg F. - 5. Color: White. #### 2.5 SEALANTS - A. FSK and Metal Jacket Flashing Sealants: - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company: CP-76. - b. <u>Eagle Bridges</u> Marathon Industries; 405. - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44. - d. Mon-Eco Industries, Inc.: 44-05. - 2. Materials shall be compatible with insulation materials, jackets, and substrates. - 3. Fire- and water-resistant, flexible, elastomeric sealant. - 4. Service Temperature Range: Minus 40 to plus 250 deg F. - Color: Aluminum. - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). - 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers." - B. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants: - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76. - 2. Materials shall be compatible with insulation materials, jackets, and substrates. - 3. Fire- and water-resistant, flexible, elastomeric sealant. - 4. Service Temperature Range: Minus 40 to plus 250 deg F. - 5. Color: White. - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59. Subpart D (EPA Method 24). - 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers." #### 2.6 FACTORY-APPLIED JACKETS - A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following: - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I. - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I. - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II. - 4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II. ## 2.7 FIELD-APPLIED FABRIC-REINFORCING MESH - A. Woven Glass-Fiber Fabric: Approximately 6 oz./sq. yd. with a thread count of 5 strands by 5 strands/sq. in. for covering equipment. - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Chil-Glas No. 5. - B. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for equipment. - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Mast-A-Fab. - b. <u>Vimasco Corporation</u>; Elastafab 894. #### 2.8 FIELD-APPLIED CLOTHS - A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd.. - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. Alpha Associates, Inc.; Alpha-Maritex 84215 and 84217/9485RW, Luben 59. #### 2.9 FIELD-APPLIED JACKETS - Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated. - B. Metal Jacket: - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Metal Jacketing Systems. - b. <u>ITW Insulation Systems</u>; Aluminum and Stainless Steel Jacketing. - c. RPR Products, Inc.; Insul-Mate. - 2. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14. - a. Sheet and roll stock ready for shop or field sizing. - b. Finish and thickness are indicated in field-applied jacket schedules. - c. Moisture Barrier for Outdoor Applications: 2.5-mil- thick polysurlyn. - d. Factory-Fabricated Fitting Covers: - 1) Same material, finish, and thickness as jacket. - 2) Preformed two-piece or gore, 45- and 90-degree, short- and
long-radius elbows. - 3) Tee covers. - 4) Flange and union covers. - 5) End caps. - 6) Beveled collars. - 7) Valve covers. - Field fabricate fitting covers only if factory-fabricated fitting covers are not available. #### 2.10 TAPES - A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136. - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. ABI, Ideal Tape Division; 428 AWF ASJ. - b. Avery Dennison Corporation, Specialty Tapes Division, Fasson 0836. - c. Compac Corporation; 104 and 105. - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ. - 2. Width: 3 inches. - 3. Thickness: 11.5 mils. - 4. Adhesion: 90 ounces force/inch in width. - 5. Elongation: 2 percent. - 6. Tensile Strength: 40 lbf/inch in width. - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape. - B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136. - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. ABI, Ideal Tape Division; 491 AWF FSK. - b. <u>Avery Dennison Corporation</u>, Specialty Tapes Division; Fasson 0827. - c. Compac Corporation; 110 and 111. - d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ. - 2. Width: 3 inches. - 3. Thickness: 6.5 mils. - 4. Adhesion: 90 ounces force/inch in width. - 5. Elongation: 2 percent. - 6. Tensile Strength: 40 lbf/inch in width. - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape. ## 2.11 SECUREMENTS - A. Bands: - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - a. <u>ITW Insulation Systems</u>; Gerrard Strapping and Seals. - b. RPR Products, Inc., Insul-Mate Strapping, Seals, and Springs. - 2. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal or closed seal. - 3. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application. - B. Insulation Pins and Hangers: - Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. - a. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - 1) AGM Industries, Inc.; Tactoo Perforated Base Insul-Hangers. - 2) GEMCO: Perforated Base. - 3) Midwest Fasteners, Inc.; Spindle. - b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square. - c. Spindle: Aluminum, fully annealed, 0.106-inch- diameter shank, length to suit depth of insulation indicated. - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates. - 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick, aluminum sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter. - a. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - 1) AGM Industries, Inc.; RC-150. - 2) GEMCO; R-150. - 3) Midwest Fasteners, Inc.; WA-150. - 4) Nelson Stud Welding: Speed Clips. - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations. - C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel. - D. Wire: 0.062-inch soft-annealed, stainless steel. - 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - a. C & F Wire. #### PART 3 - EXECUTION #### 3.1 EXAMINATION - A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application. - Verify that systems and equipment to be insulated have been tested and are free of defects. - 2. Verify that surfaces to be insulated are clean and dry. - B. Proceed with installation only after unsatisfactory conditions have been corrected. #### 3.2 PREPARATION - A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application. - B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows: - Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range. - 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range. - C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation. - D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water. ## 3.3 GENERAL INSTALLATION REQUIREMENTS - A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment. - B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment as specified in insulation system schedules. - C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state. - D. Install insulation with longitudinal seams at top and bottom of horizontal runs. - E. Install multiple layers of insulation with longitudinal and end seams staggered. - F. Keep insulation materials dry during application and finishing. - G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer. - H. Install insulation with least number of joints practical. - Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses. - J. Install insulation with factory-applied jackets as follows: - 1. Draw jacket tight and smooth. - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c. - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c. - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal. - K. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness. - L. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement. - M. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints. - N. For above ambient services, do not install insulation to the following: - 1. Vibration-control devices. - Testing agency labels and stamps. - 3. Nameplates and data plates. - 4. Manholes. - 5. Handholes. - Cleanouts. ## 3.4 INSTALLATION OF EQUIPMENT, TANK, AND VESSEL INSULATION - A. Mineral-Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers. - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of tank and vessel surfaces. - Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints. - 3. Protect exposed corners with secured corner angles. - Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows: - a. Do not weld anchor pins to ASME-labeled pressure vessels. - b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate. - c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions. - d. Do not overcompress insulation during installation. - c. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels. - f. Impale insulation over anchor pins and attach speed washers. - g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing. - 5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials. - 6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided,
install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands. - 7. Stagger joints between insulation layers at least 3 inches. - 8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection. - 9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates. - For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation. - B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels. - 1. Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive. - 2. Seal longitudinal seams and end joints. - C. Insulation Installation on Pumps: - 1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch centers, starting at corners. Install 3/8-inch- diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism. - 2. Fabricate boxes from aluminum, at least 0.060 inch thick. #### 3.5 FIELD-APPLIED JACKET INSTALLATION - A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets. - 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints. - 2. Embed glass cloth between two 0.062-inch- thick coats of lagging adhesive. - 3. Completely encapsulate insulation with coating, leaving no exposed insulation. - B. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints. - C. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating. #### 3.6 FIELD QUALITY CONTROL - A. Perform tests and inspections. - B. Tests and Inspections: Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance. - C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements. ## 3.7 EQUIPMENT INSULATION SCHEDULE - A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option. - B. Insulate indoor and outdoor equipment that is not factory insulated. - C. Chilled water buffer tank insulation shall be the following: - 1. Flexible Elastomeric: 1 ½"thick. - D. Chilled-water pump insulation shall be the following: - 1. Flexible Elastomeric: 1 ½"thick. - E. Chilled-water expansion/compression tank insulation shall be the following: - 1. Flexible Elastomeric: 1 1/2"thick. - F. Chilled-water air separator insulation shall be the following: 1. Flexible Elastomeric: 1 ½"thick. ## 3.8 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE - A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket. - B. If more than one material is listed, selection from materials listed is Contractor's option. - C. Equipment, exposed, less than 24 inches in diameter: - 1. Aluminum, Stucco Embossed: 0.016 inch thick. - D. Equipment, Exposed, 24 to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches: - 1. Aluminum, Stucco Embossed with Z-Shaped Locking Seam: 0.032 inch thick. - E. Equipment, Exposed, Larger Than 48 Inches in Diameter or with Flat Surfaces Larger Than 72 Inches: - 1. Aluminum, Stucco Embossed with 1-1/4-Inch- Deep Corrugations: 0.032 inch thick. **END OF SECTION** #### **SECTION 23 0719** #### HVAC PIPING INSULATION #### PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. Section includes insulating the following HVAC piping systems: - 1. Condensate drain piping, indoors and outdoors. - 2. Chilled-water piping, indoors and outdoors. - 3. Heating hot-water piping, indoors and outdoors. #### B. Related Sections: - 1. Division 23 "Duct Insulation." - 2. Division 23 "HVAC Equipment Insulation." ## 1.3 ACTION SUBMITTALS - A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any). - B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work. - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger. - 2. Detail insulation application at pipe expansion joints for each type of insulation. - 3. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation. - 4. Detail removable insulation at piping specialties. - 5. Detail application of field-applied jackets. - 6. Detail application at linkages of control devices. ## 1.4 INFORMATIONAL SUBMITTALS - A. Qualification Data: For qualified Installer. - B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed. C. Field quality-control reports. #### 1.5 QUALITY ASSURANCE - A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training. - B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency. - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less. - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less. ## 1.6 DELIVERY, STORAGE, AND HANDLING A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature. #### 1.7 COORDINATION - A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 23 "Hangers and Supports for HVAC Piping and Equipment." - B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance. ### 1.8 SCHEDULING - A. Schedule insulation application after pressure testing. Insulation application may begin on segments that have satisfactory test results. - Complete installation and concealment of plastic materials as rapidly as possible in each area of construction. #### PART 2 - PRODUCTS #### 2.1 INSULATION MATERIALS A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied. - B. Products shall not contain asbestos, lead, mercury, mercury compounds or PBDE's (Polybrominated Diphenyl Ethers). - C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871. - D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795. - E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process. - F. Flexible Elastomeric Insulation: closed-cell, sponge- or expanded-rubber materials. Comply with aSTM C 534, Type I for tubular materials. - 1. Products: Subject to compliance with requirements, provide one of the following: - a. Aeroflex USA, Inc.; Aerocel - b. Armacell LLC, AP Armaflex - c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS - G. Mineral-Fiber, Preformed Pipe Insulation: - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - a. Johns Manville; Micro-Lok. - b. Knauf Insulation; 1000-Degree Pipe Insulation. - Owens Corning; Fiberglas Pipe Insulation. - 2. Type I, 850
deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article. - 3. Type II, 1200 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type II, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article. - H. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article. - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. <u>CertainTeed Corp.; CrimpWrap</u>. - b. <u>Johns Manville; MicroFlex</u>. - c. Knauf Insulation; Pipe and Tank Insulation. - d. Owens Corning; Fiberglas Pipe and Tank Insulation. #### Phenolic: - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following: - a. Kingspan Tarec Industrial Insulation. - Resolco International BV - Preformed pipe insulation of rigid, expanded, closed-cell structure. Comply with ASTM C 1126, Type III, Grade 1. - 3. Block insulation of rigid, expanded, closed-cell structure. Comply with ASTM C 1126, Type II, Grade 1. - 4. Factory fabricate shapes according to ASTM C 450 and ASTM C 585. - 5. Factory-Applied Jacket: Requirements are specified in "Factory-Applied Jackets" Article. - a. Preformed Pipe Insulation: None ## 2.2 INSULATING CEMENTS - A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195. - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. Ramco Insulation, Inc.; Super-Stik. #### 2.3 ADHESIVES - A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated. - B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I. - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - a. <u>Aeroflex USA, Inc.</u>; Aeroseal. - b. <u>Armacell LLC</u>; Armaflex 520 Adhesive. - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-75. - d. K-Flex USA; R-373 Contact Adhesive. - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers." - C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A. - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127. - b. <u>Eagle Bridges</u> Marathon Industries; 225. - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70. - d. Mon-Eco Industries, Inc.; 22-25. - 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers." - D. Phenolic Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F. - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following: - a. Kingspan Tarec Industrial Insulation. - b. Resolco International BV - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers." - E. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints. - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82. - b. <u>Eagle Bridges</u> Marathon Industries; 225. - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50. - d. Mon-Eco Industries, Inc.; 22-25. - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers." ### 2.4 MASTICS A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II. - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). - B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services. - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - a. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90. - b. Vimasco Corporation, 749. - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness. - 3. Service Temperature Range: Minus 20 to plus 180 deg F. - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight. - 5. Color: White. - C. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services. - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Encacel. - b. <u>Eagle Bridges</u> Marathon Industries; 570. - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 60-95/60-96. - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness. - 3. Service Temperature Range: Minus 50 to plus 220 deg F. - 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight. - Color: White. #### 2.5 LAGGING ADHESIVES - A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates. - 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). - 2. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-50 AHV2. - b. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-36. - c. <u>Vimasco Corporation</u>; 713 and 714. - 3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation. - 4. Service Temperature Range: 0 to plus 180 deg F. Color: White. #### 2.6 SEALANTS #### A. Joint Sealants: - 1. <u>Joint Sealants for Phenolic Products</u>: Subject to compliance with requirements, provide one of the following: - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76. - b. Marathon Industries; 405. - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-45. - d. Mon-Eco Industries, Inc.; 44-05. - e. Pittsburgh Corning Corporation; Pittseal 444. ### B. FSK and Metal Jacket Flashing Sealants: - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76. - b. <u>Eagle Bridges</u> Marathon Industries; 405. - c. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44. - d. Mon-Eco Industries, Inc.; 44-05. - 2. Materials shall be compatible with insulation materials, jackets, and substrates. - 3. Fire- and water-resistant, flexible, elastomeric sealant. - 4. Service Temperature Range: Minus 40 to plus 250 deg F. - 5. Color: Aluminum. - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). - 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers." - C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants: - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - a. <u>Childers
Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76. - 2. Materials shall be compatible with insulation materials, jackets, and substrates. - 3. Fire- and water-resistant, flexible, elastomeric sealant. - 4. Service Temperature Range: Minus 40 to plus 250 deg F. - Color: White. - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). - 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers." ## 2.7 FACTORY-APPLIED JACKETS - A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following: - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I. - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I. - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II. - 4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II. ## 2.8 FIELD-APPLIED FABRIC-REINFORCING MESH - A. Woven Glass-Fiber Fabric: Approximately 2 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in. for covering pipe and pipe fittings. - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Chil-Glas Number 10. - B. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for pipe. - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - a. <u>Foster Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Mast-A-Fab. - b. Vimasco Corporation; Elastafab 894. ## 2.9 FIELD-APPLIED JACKETS - A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated. - B. Metal Jacket: - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - a. <u>Childers Brand</u>, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Metal Jacketing Systems. - b. <u>ITW Insulation Systems</u>; Aluminum and Stainless Steel Jacketing. - c. RPR Products, Inc.; Insul-Mate. - Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14. - a. Sheet and roll stock ready for shop or field sizing. - b. Finish and thickness are indicated in field-applied jacket schedules. - c. Moisture Barrier for Outdoor Applications: 2.5-mil- thick polysurlyn. - d. Factory-Fabricated Fitting Covers: - 1) Same material, finish, and thickness as jacket. - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows. - 3) Tee covers. - 4) Flange and union covers. - 5) End caps. - 6) Beveled collars. - 7) Valve covers. - Field fabricate fitting covers only if factory-fabricated fitting covers are not available. #### 2.10 TAPES - A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136. - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - ABI, Ideal Tape Division; 428 AWF ASJ. - b. <u>Avery Dennison Corporation</u>, Specialty Tapes Division; Fasson 0836. - c. Compac Corporation; 104 and 105. - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ. - 2. Width: 3 inches. - 3. Thickness: 11.5 mils. - 4. Adhesion: 90 ounces force/inch in width. - 5. Elongation: 2 percent. - 6. Tensile Strength: 40 lbf/inch in width. - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape. - B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136. - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - a. ABI, Ideal Tape Division; 491 AWF FSK. - b. <u>Avery Dennison Corporation</u>, Specialty Tapes Division; Fasson 0827. - c. Compac Corporation; 110 and 111. - d. <u>Venture Tape</u>; 1525 CW NT, 1528 CW, and 1528 CW/SQ. - 2. Width: 3 inches. - 3. Thickness: 6.5 mils. - 4. Adhesion: 90 ounces force/inch in width. - 5. Elongation: 2 percent. - 6. Tensile Strength: 40 lbf/inch in width. - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape. #### 2.11 SECUREMENTS #### A. Bands: - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following: - a. <u>ITW Insulation Systems</u>; Gerrard Strapping and Seals. - b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs. - 2. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal or closed seal. - 3. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application. - B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel. - C. Wire: 0.080-inch nickel-copper alloy. - 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - a. C & F Wire. #### PART 3 - EXECUTION ## 3.1 EXAMINATION - A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application. - 1. Verify that systems to be insulated have been tested and are free of defects. - 2. Verify that surfaces to be insulated are clean and dry. - 3. Proceed with installation only after unsatisfactory conditions have been corrected. #### 3.2 PREPARATION - A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application. - B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows: - Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range. - 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range. - C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water. #### 3.3 GENERAL INSTALLATION REQUIREMENTS - A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties. - B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules. - C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state. - D. Install insulation with longitudinal seams at top and bottom of horizontal runs. - E. Install multiple layers of insulation with longitudinal and end seams staggered. - F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties. - G. Keep insulation materials dry during application and finishing. - H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer. - I. Install insulation with least number of joints practical. - J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic. - 1. Install insulation continuously through hangers and around anchor attachments. - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic. - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer. - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield. - K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses. - L. Install insulation with factory-applied jackets as follows: - 1. Draw jacket tight and smooth. - Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c. - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c. - a. For below-ambient services, apply vapor-barrier mastic over staples. - 4. Cover joints and seams with tape,
according to insulation material manufacturer's written instructions, to maintain vapor seal. - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings. - M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness. - N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement. - O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints. - P. For above-ambient services, do not install insulation to the following: - Vibration-control devices. - 2. Testing agency labels and stamps. - 3. Nameplates and data plates. - 4. Manholes. - 5. Handholes. - 6. Cleanouts. #### 3.4 PENETRATIONS - A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations. - 1. Seal penetrations with flashing sealant. - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant. - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing. - 4. Seal jacket to roof flashing with flashing sealant. - B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant. - C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations. - 1. Seal penetrations with flashing sealant. - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant. - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches. - Seal jacket to wall flashing with flashing sealant. - D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions. - E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. - 1. Comply with requirements in Division 7 "Through-Penetration Firestop Systems" for firestopping and fire-resistive joint sealers. - F. Insulation Installation at Floor Penetrations: - 1. Pipe: Install insulation continuously through floor penetrations. - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 7 "Through-Penetration Firestop Systems." #### 3.5 GENERAL PIPE INSULATION INSTALLATION - A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles. - B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions: - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated. - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation. - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. But - each section closely to the next and hold in place with tie wire. Bond pieces with adhesive. - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement. - Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour. - 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape. - 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels. - C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant. - D. Install removable insulation covers at locations indicated. Installation shall conform to the following: - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation. - When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket. - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body. - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish. 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket. ## 3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION - A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated. - B. Insulation Installation on Pipe Flanges: - 1. Install pipe insulation to outer diameter of pipe flange. - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation. - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation. - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated. - C. Insulation Installation on Pipe Fittings and Elbows: - 1. Install mitered sections of pipe insulation. - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated. - D. Insulation Installation on Valves and Pipe Specialties: - Install preformed valve covers manufactured of same material as pipe insulation when available. - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation. - 3. Install insulation to flanges as specified for flange insulation application. - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated. ## 3.7 INSTALLATION OF MINERAL-FIBER INSULATION - A. Insulation Installation on Straight Pipes and Tubes: - 1. Secure each layer of
preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials. - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant. - 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c. 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant. ## B. Insulation Installation on Pipe Flanges: - 1. Install preformed pipe insulation to outer diameter of pipe flange. - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation. - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation. - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant. ## C. Insulation Installation on Pipe Fittings and Elbows: - Install preformed sections of same material as straight segments of pipe insulation when available. - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands. ## D. Insulation Installation on Valves and Pipe Specialties: - Install preformed sections of same material as straight segments of pipe insulation when available. - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body. - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation. - 4. Install insulation to flanges as specified for flange insulation application. #### 3.8 INSTALLATION OF PHENOLIC INSULATION #### A. General Installation Requirements: - 1. Secure single-layer insulation with stainless-steel bands at 12-inch intervals and tighten bands without deforming insulation materials. - 2. Install 2-layer insulation with joints tightly butted and staggered at least 3 inches. Secure inner layer with 0.062-inch wire spaced at 12-inch intervals. Secure outer layer with stainless-steel bands at 12-inch intervals. ## B. Insulation Installation on Straight Pipes and Tubes: - 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials. - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant. - 3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward-clinched staples at 6 inches o.c. - 4. For insulation with factory-applied jackets with vapor retarders on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant. - C. Insulation Installation on Pipe Flanges: - 1. Install preformed pipe insulation to outer diameter of pipe flange. - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation. - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of block insulation of same material and thickness as pipe insulation. - D. Insulation Installation on Pipe Fittings and Elbows: - 1. Install preformed insulation sections of same material as straight segments of pipe insulation. Secure according to manufacturer's written instructions. - E. Insulation Installation on Valves and Pipe Specialties: - 1. Install preformed insulation sections of same material as straight segments of pipe insulation. Secure according to manufacturer's written instructions. - Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation. - 3. Install insulation to flanges as specified for flange insulation application. #### 3.9 FIELD-APPLIED JACKET INSTALLATION A. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints. ## 3.10 FIELD QUALITY CONTROL - A. Perform tests and inspections. - B. Tests and Inspections: - Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three Insert number locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article. - C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements. ## 3.11 PIPING INSULATION SCHEDULE, GENERAL - A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option. - B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following: - 1. Drainage piping located in crawl spaces. - 2. Underground piping. - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury. ## 3.12 INDOOR PIPING INSULATION SCHEDULE - A. Condensate and Equipment Drain Water below 60 Deg F: - 1. All Pipe Sizes: Insulation shall be the following: - a. Flexible Elastomeric: 1 inch thick - B. Chilled Water, above 40 Deg F: (Including water being used to cool refrigerator and freezer condensers). - 1. Insulation shall be one of the following: - a. Flexible Elastomeric: 1 ½ inch thick - b. Phenolic: 1 inch thick - C. Heating-Hot-Water Supply and Return, 200 Deg F and Below: - 1. Insulation shall be the following: - a. Mineral-Fiber, Preformed Pipe, Type I or Pipe and Tank Insulation: 1-1/2 inches - b. Phenolic: 1 inch thick - 2. Pipe run-outs serving a single coil, and not exceeding 12 feet in length: - a. Mineral-Fiber,: Preformed pipe, Type 1, ½ inch thick - b. Phenolic: 1 inch thick ## 3.13 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE - A. Chilled Water: - 1. All Pipe Sizes: Insulation shall be the following: - a. Flexible Elastomeric: 2 inches thick. - b. Phenolic: 1 inch thick. - B. Heating-Hot-Water Supply and Return, 200 Deg F and Below: - 1. All Pipe Sizes: Insulation shall be the following: - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick. - b. Phenolic: 1 inch thick. - 3.14 INDOOR, FIELD-APPLIED JACKET SCHEDULE - A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket. - B. If more than one material is listed, selection from materials listed is Contractor's option. - C. Piping, Concealed: - 1. None. - D. Piping, Exposed: - 1. Aluminum, Stucco Embossed: 0.020 inch thick. - 3.15 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE - A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket. - B. If more than one material is listed, selection from materials listed is Contractor's option. - C. Outdoor piping: Aluminum, Stucco Embossed with Z-Shaped Locking Seam: 0.020 inch thick. END OF SECTION #### **SECTION 23 0923** ## DIRECT DIGITAL CONTROL SYSTEM FOR HVAC #### PART 1 - GENERAL - 1.1 PRODUCTS FURNISHED BUT NOT INSTALLED UNDER THIS SECTION - A. Section 15181 and 15182 Hydronic and steam piping - 1. Control valves - 2. Pressure and temperature sensor wells, and sockets - B. Section 15820 Duct accessories - 1. Airflow stations - 2. Automated dampers, including actuators. - 3. Terminal unit controls - 1.2 PRODUCTS INSTALLED BUT NOT FURNISHED UNDER THIS SECTION - A. Humidifier safety interlock components - 1.3 PRODUCTS NOT FURNISHED OR INSTALLED UNDER BUT INTEGRATED WITH THE WORK OF THIS SECTION - A. Section General - 1. Coordination Meeting - Negative pressure isolation room control system - C. Section 15127 Meters and Gauges - 1. Flow measuring stations - D. Sections 15515 and 15516 Hot Water and Steam boilers and accessories - Boiler controls - E. Section 15555 Draft control devices - F. Section 15752 Humidifiers - G. Section 15725 Custom rooftop Air handling units - 1. AHU controls - H. Section 15763 Terminal heating and cooling units